

Project Log

Matthew Arnold
Barton Peveril Sixth Form College

Centre Number: 58231

Mechanics Simulator 2014

Matthew Arnold 1 Candidate Number - 7061

Table of Contents

Analysis ... 5

Background to the problem .. 5

Description of the current system .. 5

Identification of the prospective user ... 6

Identification of user needs and acceptable limitations ... 6

User Needs .. 6

Acceptable limitations .. 6

Potential Solutions .. 7

Justification of chosen solution ... 8

Analysis Data Dictionary ... 8

Data Flow Diagrams .. 10

Data Volumes .. 10

Objects .. 11

Objectives ... 11

General Objectives ... 11

Specific Objectives ... 11

Evidence of use of appropriate analysis techniques ... 12

Design .. 13

Overall System Design .. 13

Description of Modular Structure of the System .. 13

Definition of Data Requirements .. 17

File Organisation and Description of Record Structure ... 17

Validation Required .. 18

Identification of Storage Media .. 19

Identification of Suitable Algorithms for Data Transformation ... 19

Encryption and Decryption ... 19

Timers .. 20

Dragging the Main Window Around ... 20

Projectile Motion Simulation .. 21

Class Definitions .. 23

Buttons .. 23

Menus .. 24

Mechanics Simulator 2014

Matthew Arnold 2 Candidate Number - 7061

Text Boxes.. 25

Screens .. 26

Screen Manager ... 34

User Interface Design .. 35

Main Menu .. 35

Simulation .. 36

Test Mode .. 39

My Progress ... 41

Settings .. 43

Security of Data .. 43

System Security ... 43

Overall Test Strategy ... 43

System Testing ... 44

Test Series 1 .. 44

Test Series 2 .. 46

Test Series 3 .. 48

Test Series 4 .. 50

Sliders ... 52

Test Series 5 .. 52

Test Series 6 .. 54

Test Series 7 .. 56

Test Series 8 .. 63

Test Series 9 .. 64

Test Series 10 .. 68

Test Series 11 .. 76

System Maintenance ... 79

System Overview .. 79

Graphics .. 80

Dragging the Main Window Around ... 81

Managing Screens ... 81

Updating, Handling Input and Keeping a List of Screens ... 82

Drawing Screens .. 83

Screen Transitions .. 83

Debug Screen .. 84

Mechanics Simulator 2014

Matthew Arnold 3 Candidate Number - 7061

Encryption and Decryption ... 85

Encryption.. 85

Decryption ... 86

Timers ... 88

Projectile Motion Simulation .. 90

Code .. 93

Forms ... 93

Classes ... 102

ScreenManager ... 102

BaseScreen .. 104

Debug .. 104

Settings.. 107

Title.. 108

SimulationButton .. 109

TestButton .. 112

MyProgressButton .. 114

SimulationMenu ... 116

ProjectileMotion ... 119

ProjectileMotionSimulation ... 124

ResolvingForces .. 129

ResolvingForcesSimulation .. 134

ForcesOnSlopes .. 137

ForcesOnSlopesSimulation ... 142

TestMenu .. 146

ProjectileMotionTest .. 149

ResolvingForcesTest ... 155

ForcesOnSlopesTest ... 159

TestReport .. 163

MyProgressReport .. 166

UserSelection .. 171

TestUserSelection ... 173

MyProgressUserSelection .. 174

BaseButton.. 175

PictureButton .. 176

TextButton .. 177

BaseMenu ... 181

AlignLeftMenu .. 181

AlignCentreMenu ... 183

Mechanics Simulator 2014

Matthew Arnold 4 Candidate Number - 7061

NumberBox ... 184

WritingBox .. 187

User Manual .. 190

Appraisal ... 190

Completion of Project Objectives ... 190

General Objectives ... 190

Specific Objectives ... 193

Evidence of Authenticated User Feedback ... 197

Analysis of User Feedback... 198

Possible Extensions ... 199

Appendices .. 200

Appendix 1 – User Guide .. 200

Mechanics Simulator 2014

Matthew Arnold 5 Candidate Number - 7061

Analysis

Background to the problem
Mechanics could be made better and more interesting by using interactive simulations. A system will

be devised to help teach students Mechanics (from a Maths or Physics course), and help the

students revise it. It will allow users to actually see what happens in Mechanics situations, rather

than having to imagine it using calculated numbers.

Description of the current system
At the moment teaching mechanics and, more importantly, revising it is heavily based on doing

previous years’ exam paper questions. Some of these questions may use a simple diagram (such as

the example below) to try to illustrate the problem. However, not all questions use these diagrams

and the diagrams only show one moment in time, such as the starting condition of the situation.

This is what students have to deal with in an actual exam, but for learning the topics for the first

time, it may be difficult to understand what actually happens after the initial condition. The only

indication of what happens is from calculated numbers.

According to my End User, other current learning techniques include drawing posters in groups

about the most difficult topics, which could involve still pictures of a Mechanics situation. As well as

this, he asks students to answer questions from text books, which often don’t have diagrams. He felt

that some students would find it difficult and therefore take longer to understand the concepts

behind the questions because of the lack of visual illustration. He wants a system to address this

issue.

OCR MEI M1 January 2012

Mechanics Simulator 2014

Matthew Arnold 6 Candidate Number - 7061

Identification of the prospective user
The end user for my system is Tristan White, a Maths Teacher at my college. He taught me a

Mechanics module as part of my Maths AS course. He is an acceptable end user because he

understands the theory of the subject and can easily communicate ideas with me without too much

explanation.

Identification of user needs and acceptable limitations

User Needs

Following an interview with my end user, I have found some features that he would like to be

included in the system:

 For the simulations, there should be a pre-set situation in which values could be altered,

rather than having an open space with a toolbox of components and the ability to create

custom situations. For learning, students would benefit better from being given a framework

to play around with and learn from. My end user pointed out that it would probably take a

whole lesson for a student to create a model useful enough to learn with from scratch about

something they haven’t learned yet.

 There should be simulations covering various different topics in mechanics:

 Vectors

 Kinematics

 Newton’s Laws

 Forces at Angles

 Projectiles

However, my end user suggested that the system should focus more on teaching the

projectiles topic, as well as a “stuff on slopes” model, since these areas are ones which he

thinks students struggle the most on.

 I asked my end user who would be ultimately using the system, teachers or students and

whether a program would therefore need a password to be entered to use. He said that the

system could be used by either students or teachers. It would be mainly used by teachers in

demonstrations for lessons, but then if there was time in a computer room, the students

could experiment with it. He said that, for this reason, a password would not be necessary.

Acceptable limitations

 For teachers and students, a basic understanding of Mechanics can be assumed. It shouldn’t

be too technical, so that learning students can still understand it but teachers may not need

the system to explain technical details that they would be expected to know if they are

teaching the subject. For example, abbreviating the word gravity to the letter ‘g’ could be

seen as acceptable.

 The Mechanics course that I will be targeting the system at is based on modelling motion

and forces in real life. However, these models are obviously not completely realistic and,

especially at this relatively low level of the subject, some significant assumptions are made

by the course itself. It would therefore be acceptable, and probably necessary, to comply

with these assumptions in the simulations. The course’s assumptions include:

Mechanics Simulator 2014

Matthew Arnold 7 Candidate Number - 7061

 Allowing any effect of air resistance to be ignored, resulting in simulated falling

objects to continue accelerating indefinitely.

 Gravity remains constant regardless of height.

 The Mechanics course only models two-dimensional motion, and so it would be an

unnecessary extension to create a system which deals with 3-D objects. It may also not be

feasible try to create a program which renders in 3-D because of my time constraint. Trying

this would require significantly more time to complete, which I do not have.

Potential Solutions
A very simple solution could be one that does not use a computer at all. By drawing a Mechanics

situation on paper at multiple points in time, a kind of slideshow is made with a slight simulation

aspect. The disadvantage of this solution would be that drawing lots of pictures is very time

consuming. Also, the different frames may not be drawn in a way that makes them accurate to

compare. For example, an object may be drawn smaller in one than in another.

I could make a VB.NET Windows Forms Application for desktop computers or laptops, which

simulates Mechanics situations on the screen. There could be a separate simulation for each type of

exam paper question situation, such as one for Projectile Motion and one for Masses on a Slope. The

user could change the initial constants and variables, and then press a play button to see what

happens. The simulations would run smoothly and be in colour, like a video. They could be paused at

any point. There would also be a ‘test mode’ in which the user is presented with an initial situation

and is asked to calculate the answer to a question about the situation. Once they enter their answer,

the simulation runs to show them if they are correct. Their progress would then be saved in a text

file, and the user could view their overall progress for each simulation.

Another potential solution could be to make an Android Mobile simulation app. Much like the

VB.NET application, there would be smooth, colour simulations, except the user would be able to

run them on their mobile. This portability is good and allows for revision or learning anywhere, such

as on the bus home, or during breaks between lessons. However, it would be impractical to use the

app within a lesson, since it would encourage the use of mobile phones during lessons. Also, it would

make using it for teacher demonstrations difficult as it couldn’t easily be projected onto an

interactive whiteboard like a PC program could be. Another drawback could be that, due to the fact

that most mobile devices have quite small screens, it may be difficult to make enough sense of the

simulation, and there wouldn’t be much room for a meaningful simulation.

I could create a database of Mechanics past exam paper questions, where questions could be

searched for by their topic, relative difficulty, length or year or release. There could also be a feature

which generates a ‘mock exam paper’ for a particular topic or difficulty. This would definitely make

using past papers to revise much more efficient, but there is no aspect of simulation, and this would

make the system very difficult to learn things for the first time from.

Mechanics Simulator 2014

Matthew Arnold 8 Candidate Number - 7061

Justification of chosen solution
I have decided to make the VB.NET Windows Forms Application. As well as the benefits I have

already mentioned, a bigger screen would allow for more detailed and meaningful simulations which

can be run with one click. Also, the completion of this program would be very time flexible due to

the ability to split it into different simulations. I can start by working on the most important

simulations, for topics which students struggle most on. If I manage to complete those with plenty of

time remaining, I could extend the program by adding simulations for more topics. This means that I

can make the most efficient use of my time when creating the program, and will hopefully end up

with a finished set of simulations.

Analysis Data Dictionary
The following table lists the fields that will be used to store data in a text file about each user’s

progress in the test mode part of the program. There will be a separate text file for each user of the

program:

Field Name Description Data Type Field Size Example

Category The simulation that the question
asked was about.

String Any Projectile
Motion

Score The score (as a percentage) that the
user got for the question.

Integer 3 figures 67

TimeScored The date and time that the user got
this score. This could be used to
chronologically order multiple test
scores, to see progress over time.

Date DD/MM/YYYY
HH:MM

06/10/2013
21:07

The next table lists the most important variables that will apply to most moving objects in a

simulation. These variables are ones which the user could change or set before running the

simulation, but would be updated by calculation as the simulations run:

Variable Name Description Data Type Variable
Size

Example

XA The horizontal component of the
acceleration of the object (Pixels per
Tick per Tick).

Double 8 bytes 0.0

YA The vertical component of the
acceleration of the object (Pixels per
Tick per Tick).

Double 8 bytes 2.125

XV The horizontal component of the
velocity of the object (Pixels per Tick).

Double 8 bytes 20.0

YV The vertical component of the velocity
of the object (Pixels per Tick).

Double 8 bytes 56.7878

XS The horizontal component of the
displacement of the object from the
top-left corner of the simulation
(Pixels).

Double 8 bytes 0.125

YS The vertical component of the
displacement of the object from the
top-left corner of the simulation

Double 8 bytes 125.65

Mechanics Simulator 2014

Matthew Arnold 9 Candidate Number - 7061

(Pixels).
Mass The mass of the object (Kilograms).

This is only applicable for objects in
simulations where resolving forces is
required.

Integer 4 bytes 200

XF The horizontal component of the
resultant force acting on the object
(Newtons). This is only applicable for
objects in simulations where resolving
forces is required.

Double 8 bytes 400.6

YF The vertical component of the
resultant force acting on the object
(Newtons). This is only applicable for
objects in simulations where resolving
forces is required.

Double 8 bytes 459.0

Angle The angle, in Radians (0 ≤ angle < 2π, 0
being directly upwards), of the
motion. This is only applicable for
objects which are projectiles.

Double 8 bytes 3.14159

Mechanics Simulator 2014

Matthew Arnold 10 Candidate Number - 7061

Data Flow Diagrams
Since there is no real existing system in place at the moment for the learning of Mechanics, I cannot

create a Data Flow Diagram for it. However, the Data Flow Diagram below shows my proposed

system:

The user could either choose to just look at the simulations, in which case they would enter/alter the

initial variables for the simulation before watching it, or use the test mode. In this case the initial

variables are set up automatically and questions are asked about the simulation before it is run.

After the user inputs their answers to the questions, the simulation runs. The user’s score on each

test is saved in a text file, and the user’s overall progress so far can be displayed to them. Each new

user of the program on a machine will be assigned a new Progress Text File.

Data Volumes
Since I am going to create a program for desktop PCs and laptops, I won’t need to worry about not

having enough memory space. However, it is still useful to think about how I could minimise the

space used.

User

Simulation

Test

Mode

User Progress Text File

Mechanics Simulator 2014

Matthew Arnold 11 Candidate Number - 7061

Because I will be using VB.NET to write the program, the most logical way to integrate sound would

be to add the sound files to the project resources. The only sound file type supported by this method

is the .wav (uncompressed) format, which uses a relatively huge amount of space. If I decided to use

sound in my program, I should try to minimise the duration of any sounds to be played. These sound

files, at a 24-bit sample resolution, will take up approximately 4GB for one hour.

Image files with large resolutions could also potentially become a storage problem and I should

consider an image’s format and size before including it in my project.

Objects
There are four different types of objects that I will need to create for my program:

 Simulations – The most important part of the program. These will be the actual animated

situations that the user would be able to play around with

 Tests – These could use the simulations to generate exam-style questions

 Menu screens – The user will need to be able to navigate around the program. This will

include the title screen, as well as the menu for possible simulations and tests

 Tools – I will create classes for buttons and lists so that I can customise the look and

behaviour of them, rather than using the Windows Forms controls

Objectives

General Objectives

1. Create a VB.NET Windows Forms Application which could be used to help to teach students

Mechanics principles for the first time.

2. The program should also act as an effective revision tool for students.

3. There should be at least one simulation about projectile motion.

4. There should be at least one simulation about resolving forces.

5. There should be at least one simulation about resolving forces at angles (“Stuff on slopes”).

6. There should be a graphics system in place which ensures that the simulations run smoothly

without any flickering or ‘lag’ on an average machine.

7. As well as the simulations the program should include a test mode, in which the user is

asked an exam-style question based on the starting condition of a prepared situation before

seeing a simulation that reveals the answer.

Specific Objectives

1. In the test mode the questions asked should have a total mark and the user’s answers

should be marked as a percentage.

2. Each time a user answers a question in test mode, the score, date/time of answering and

question category should be saved in a text file.

3. Each user of the program on a machine should have their own progress text file assigned to

them. If a new user uses the program, a new text file should be created.

4. A user should be able to view their progress over time with the test mode for any particular

question category. This could be displayed as a graph.

Mechanics Simulator 2014

Matthew Arnold 12 Candidate Number - 7061

5. When the test mode or ‘My Progress’ is selected, a list of existing users should be displayed.

If the user has used the program on that machine before, they can select their name from

the list. If they are not on the list, there will be a text box for them to create a new user

name, thus creating a new progress text file.

6. The simulations should be visually pre-set, but users should be able to input/alter starting

variables and constants before running the simulation.

7. Simulations should be able to be paused at any time.

8. There should be keyboard bindings to the simulation play, pause and reset functions. For

example, the user could press the space bar to pause the simulation. This would make those

functions easier to use, and gives an alternative to clicking with the mouse.

9. I will need to be able to use traditional SI units for quantities, such as “metres per second”

for velocity, rather than “pixels per tick”. For this reason, I will create a method for

converting between the pixel and metre forms.

10. On the menu for selecting simulations, there should be an image previewing each

simulation. This would make the program look more interesting, as well as giving the user a

taster of each simulation before needing to run them.

11. Each user’s progress data string should be encrypted before being written to file, to prevent

users from cheating by altering their scores.

Evidence of use of appropriate analysis techniques
To gather more information about what my end user wanted from the new system, I interviewed

him. The transcript is as follows:

Q - What are your current methods for teaching Mechanics?
A - One might be to get students to work in pairs to create posters on the more difficult topics
like projectiles. Also, I get them to answer questions from the text book. The limitation or lack of
actual diagrams involved in these make it difficult for some students to learn.

Q - Are there any topics within Mechanics which students find the hardest and perhaps deserve
more focus in the program?
A - Projectiles would be one topic. Also if possible a 'stuff on slopes' model would be nice.

Q - The program will use simulations. Do you think it would be better to have a series of pre-set
situations, in which the user could change the numbers (i.e. change the mass, angle or friction),
or be able to make a unique situation using, for example, a toolbox of masses and wires?
A - A pre-set situation would be more useful. Many students would take the whole lesson to get
anything approaching useful as a model.

Q - Would the program be used by only teachers (and shown to the class using the projector) or
be available for students to use as well? This also implies the question: Would the program need
some kind of password protection so only teachers could access it?
A - It would be used in teacher led demonstrations, but then if there were time in a computer
room where the students could play around with it. A password would not be necessary.

Q - Do you have any resources or documents which you think may help me to make the
program?
A - I would suggest looking at Section B past paper questions to get an idea of the difficulty of
questions that would need to be tackled.

Mechanics Simulator 2014

Matthew Arnold 13 Candidate Number - 7061

Design

Overall System Design
There will be three main sections to my program:

 Simulation

 Test

 My Progress

The first, Simulation, will be for playing around with the various simulations in the program. All of

the important variables and constants could be set before pressing play and watching the simulation

run. This section would be good for learning, and useful for teacher demonstrations.

The second, Test, is for examining the knowledge learned from lessons, or from the simulation

section. An exam-style question will be asked about the simulation category that the user chooses.

After inputting the answers, the simulation runs to show the user if they are correct. The user’s

score is saved in their progress file.

The third and final section, My Progress, will be a way for a user to see their progress over time in

the Test section. This information could help them decide which topics they need to revise more on,

and which topics they are doing really well in.

I will not be using the conventional graphics system for a Windows Forms Application. This means

that I will be using very few in-built objects, such as buttons and text boxes, and won’t be using the

Windows Forms Designer much. Instead, I will be using the Graphics.CreateGraphics methods, and

drawing to a Bitmap in memory, which will be drawn to the user’s screen frame-by-frame.

Description of Modular Structure of the System

Mechanics Simulator 2014

Matthew Arnold 14 Candidate Number - 7061

The diagram above shows the screen navigation layout for the program. Each box represents one

screen, or distinct view to the user. The arrows show the possible paths between screens, for

example, by clicking buttons. The first screen shown to the user, obviously, is the title screen.

This diagram highlights how the user selection process works. When the user wishes to look at the

Test or My Progress sections, they first must pass a user selection screen, to select or create their

user name. Once past the user selection screens, the user reaches the actual section they were

looking for. It is not possible to get directly back to user selection. Any ‘Back’ button would go back

to the title screen.

In the tests for any category, there is a loop. This shows that after completing a test, the user will

have the option to reload that same test category without having to go back to the menu and select

it again.

It is important to note that in both the file reading and writing processes, the encryption and

decryption of the text file’s contents would also take place. (See the Identification of Suitable

Algorithms section)

Mechanics Simulator 2014

Matthew Arnold 15 Candidate Number - 7061

The diagram to the left shows the

structure of a test, from generating

the initial variables, to getting the

user’s answers, to running and

displaying the simulation, marking

the user’s answers and displaying

the test report.

Mechanics Simulator 2014

Matthew Arnold 16 Candidate Number - 7061

The diagram to the left shows the

structure of the process which

reads a user’s text file. This is what

will be used for the My Progress

section and it shows how some of

the statistics about a particular

user’s data are calculated.

Mechanics Simulator 2014

Matthew Arnold 17 Candidate Number - 7061

Definition of Data Requirements
The table below shows the main controls and variables which will be important to the program as a

whole.

Variable Name Description Data Type Example

BMP The image in memory to which
everything is drawn to

Bitmap -

Display The only visible control on the main
form. Display’s image is set to BMP
every tick of MainTimer

PictureBox

MainTimer The timer with a minimum time
interval which makes the Screen
Manager update and draw all enabled
screens

Timer

ScreenManager (See the Class Definitions section) ScreenManager
KeysDown Saves the ASCII values for all keys

which are pressed. The Form’s
KeyDown event will add the pressed
key to this list. This list is cleared at
the end of every MainTimer tick

List(Of Integer) 65 (“a”)

KeysUp Saves the ASCII values for all keys
which are released. The Form’s
KeyDown event will add the released
key to this list. This list is cleared at
the end of every MainTimer tick

List(Of Integer) 112 (F1)

MouseButtonsDown Saves the location and button value
whenever a mouse button is pressed.
This list is cleared at the end of every
MainTimer tick

List(Of
MouseButonInfo)

MouseButonsUp Saves the location and button value
whenever a mouse button is released.
This list is cleared at the end of every
MainTimer tick

List(Of
MouseButonInfo)

ProgramPause Used to indicate whether the whole
program needs to be paused. If this
holds true, the Screen Manager won’t
be used every tick of MainTimer

Boolean True

CurrentUser Holds the name of the current user
logged into the program

String TestUser69

File Organisation and Description of Record Structure
I will be using text files to save each user’s progress in the test section of the program. The user text

files will be saved in the user’s document folder. This is a location which is easily found if files

needed to be removed or accessed. As shown in the data dictionary, there are three variables that I

will save for each test report:

Mechanics Simulator 2014

Matthew Arnold 18 Candidate Number - 7061

Field Name Description Data Type Field Size Example

Category The simulation that the question
asked was about.

String Any Projectile
Motion

Score The score (as a percentage) that the
user got for the question.

Integer 3 figures 67

TimeScored The date and time that the user got
this score. This could be used to
chronologically order multiple test
scores, to see progress over time.

Date DD/MM/YYYY
HH:MM

06/10/2013
21:07

Within each recorded test report I will separate the three variables by commas (“,”). Each Record

will have a “|” symbol at the end to show the data reading algorithm where the end of each record

is. Below is an example of a user’s text file.

The general structure of each record is “Category,Score,TimeScored|” The first report in the

example shows a test completed on the 4th of January 2014 at 10:54 (and 25 seconds) about

Projectile Motion. The score for that test was 100%.

Validation Required
Because of the graphics system I will be using, I will need to create my own “Text Box” classes. I can

take advantage of this and create one for writing using letters and one for entering numbers.

The number text box would be used when entering initial conditions for simulations, as well as

answering test questions. These will only accept inputs which are numbers (from across the top of

the keyboard, or from the NumPad) and a point or full stop to act as a decimal point. Also, only one

decimal point should be allowed at one time and the decimal point won’t be able to be entered first.

The writing text box will only need to be used when typing in a new user name. It is important that

the usernames are created such that they don’t use any characters which will break the file system.

Therefore, I will only allow numbers 0-9 and upper or lowercase letters. Also, there will be a 10

character length limit when creating a user name. This is so that names which could be really long

don’t take up too much space. For example, when displaying the list of current users to login with,

names may overlap if they are too long.

Mechanics Simulator 2014

Matthew Arnold 19 Candidate Number - 7061

There will need to be validation for the initial variables entered into the simulations, to make sure

that impossible or unrealistic situations are avoided, for example, when entering the friction for

various simulations. In the mechanics model that I will use, there are limits to what the frictional

force can be: It cannot be negative (since that would mean that it doesn’t oppose motion) and there

is an upper limit so that it doesn’t cause the objects to move in the opposite direction to that which

they should.

Identification of Storage Media
My program will be intended to be stored and used on a PC or laptop with average performance. I

predict that the program will take up a tiny amount of space, since I have decided not to use sound.

The program itself shouldn’t end up being larger than 1 Megabyte. Using images that are not too

large or high quality will help to reduce the size of the executable program file. The user progress

text files will take up even less space, since they will only contain text. A progress file with the

number of test reports in the example from the previous section won’t be larger than a few

Kilobytes. The small size and the fact that the program will be used on PCs means that minimizing

storage space will not be a problem at all.

Potential distribution of the program would either be by downloading from the internet, or from a

USB flash drive. Due to the very small size of the program, using a single-write distribution medium,

such as a read-only CD, would be a waste of storage space. USB sticks are good because they are re-

writable and internet downloading is feasible because of the small file size that would need to be

downloaded.

Identification of Suitable Algorithms for Data Transformation

Encryption and Decryption

I will encrypt the contents of each user’s progress text file, to protect them from tampering.

The algorithm for encryption will be:

1. Generate a random integer between 1 and 4. Call this NumOfLoops

2. For NumOfLoops times(steps 3-6):

3. Move all characters 2 ASCII codes up

4. Reverse the order of the characters in the string

5. Split the string so it has ALL of the evenly indexed characters followed by the oddly indexed

characters. For example, “helloworld” would be turned into “elwrdhlool”

6. Reverse the string again

7. Put 2* NumOfLoops onto the beginning of the string

8. Repeat one iteration of steps 3 to 6

I will also need an algorithm for decryption, which will effectively be the reverse of the encryption

one:

1. Reverse the string

2. Split the string into two halves. For odd length strings, first half is shorter.

Mechanics Simulator 2014

Matthew Arnold 20 Candidate Number - 7061

3. Reconstruct the full string, by taking a character from the second half, then the first half,

then the second half etc.

4. Reverse the string again

5. Move all characters 2 ASCII codes down

6. Take the first character from the string. Divide this by two, this is the NumOfLoops

generated at encryption

7. For NumOfLoops times repeat steps 1 to 5

The image above shows one possible user save file after it has been encrypted using my algorithm.

Timers

There will be one Windows Forms Timer for my program called MainTimer, which will be always

enabled and will have the minimum time interval. This will effectively be an infinite loop for my

program. At every tick of this timer, the ScreenManager (talked about in the Class Definitions

section) will update and draw all currently enabled screens. This means that I won’t be able to use

Windows Forms Timers easily for other things that need timing, such as the simulations, so will need

to make my own timers within the Update procedures of the screen classes. I plan to use Date

variables to make these timers work. The algorithm for a timer will be:

1. When the screen is instantiated, save the current time into a variable, TimerTime

2. In the screen’s Update procedure, where the timer is needed:

3. If (CurrentTime - TimerTime) is greater than the intended timer interval:

4. TimerTime CurrentTime

5. Code to be carried out each tick of the timer

Dragging the Main Window Around

The Main program Window will have a fixed size. Normally to drag a window around, the user clicks

and drags on the window’s title bar. However, I intend to not have a Window Title Bar for my

program, and instead have a border going all the way around. The user should be able to click and

drag anywhere on the border to move the program window. The algorithm for this process is:

1. If a mouse button is pressed while the mouse cursor is hovered over the program border,

save the X and Y distance of the mouse cursor position from the top-left corner of the

window

Mechanics Simulator 2014

Matthew Arnold 21 Candidate Number - 7061

2. If the mouse is moved while the mouse button is still held down, update the window’s

position on the screen

a. The window’s X coordinate should become the mouse cursor’s X coordinate

translated to the left by the X distance saved

b. The window’s Y coordinate should become the mouse cursor’s Y coordinate

translated up by the Y distance saved

Projectile Motion Simulation

One of the Simulations which I plan on creating is for the category of Projectile Motion. A hand-

drawn design for this Simulation can be found on page 37. The Simulation involves a ball being fired

from a cannon through a gap in a wall and the main purpose of it will be to update the position of

the ball based on how long the Simulation has been running for.

The core algorithm will be inside a Timer (Timers are explained on the previous page). The algorithm

will need to gradually increase the time variable of the Simulation, and calculate where the ball

should be at that time. It will also need to work out if the ball should collide with the wall or the

bounds of the Simulation.

The underpinning part of the theory of Mechanics for this Simulation is the SUVAT equation:

𝑠 = 𝑢𝑡 +
1

2
𝑎𝑡2

Where s = Displacement of a particle, u = Initial velocity of the particle, t = Elapsed time, a =

acceleration of the particle.

Since the displacement (s) of the particle can be seen as the position relative to the particle’s initial

position, the equation can be re-written as:

𝑝 − 𝑝0 = 𝑢𝑡 +
1

2
𝑎𝑡2

𝑝 = 𝑝0 + 𝑢𝑡 +
1

2
𝑎𝑡2

Where p0 = Initial position of the particle, p = Current position of the particle

Mechanics Simulator 2014

Matthew Arnold 22 Candidate Number - 7061

The Projectile Motion algorithm will use this equation to separately calculate the new X and Y

coordinates of the ball (the Simulation assumes that the ball is a particle). For the calculation of the

horizontal, X- coordinate, there is never any horizontal acceleration. This shortens the equation for

finding the X-coordinate:

𝑝𝑥 = 𝑝𝑥0 + 𝑢𝑥𝑡
Where the x subscript denotes a horizontal component.

For the calculation of the vertical, Y coordinate, there is a constant downwards acceleration dues to

gravity. This, for the Mechanics topic I am basing my project on, is given as 9.8ms-2. Since upwards

will be considered positive, a value of -9.8 would need to be used:

𝑝𝑦 = 𝑝𝑦0 + 𝑢𝑦𝑡 +
1

2
(−9.8)𝑡2

𝑝𝑦 = 𝑝𝑦0 + 𝑢𝑦𝑡 −
1

2
× 9.8𝑡2

Where the y subscript denotes a vertical component.

The core algorithm for the Projectile Motion Simulation is:

1. Every 25 milliseconds (using a timer, defined on page 20):

2. Calculate, in metres and using the equations below, the expected position of the ball as if no

collision were to happen

a. px = px0 + uxt

b. py = py0 + uyt - 0.5 * 9.8t2

3. Check horizontal collisions and in the case of a collision, update velocities and positions

appropriately. If no collision is found, update the ball’s X coordinate with the expected X

coordinate

a. Check if the ball would have collided with the left edge of the screen

b. Check if the ball would have collided with the wall

c. Check if the ball would have collided with the right edge of the screen, past the wall

4. Check vertical collisions and in the case of a collision, update velocities and positions

appropriately. If no collision is found, update the ball’s Y coordinate with the expected Y

coordinate

a. Check if the ball reaches the top edge of the screen. In this case, the displayed ball

would not move up any further, but the theoretical one would

b. Check if the ball collides with the ground

Mechanics Simulator 2014

Matthew Arnold 23 Candidate Number - 7061

5. Increase the elapsed time of the Simulation by 1 microsecond (1x10-6 seconds)

6. Repeat steps 2 to 5 10,000 times

Approximately every 25 milliseconds of real time, the program simulates 0.01 seconds of the ball’s

motion.

Class Definitions
In the following section of this document, the class diagrams follow a general format:

 Data types of variables, functions and class names are blue

 When a class overrides one of its inherited methods, the method name is green

 Base classes are in red

 It can be assumed that all attributes and methods are public unless stated as private or

protected

 It can be assumed that all public or protected attributes and methods from a subclass’s base

class are inherited

Buttons

Buttons will be used in my program when an input of a single click is needed, for example for

proceeding or going back a screen. Each button can be in one of three states:

 Default: The mouse cursor is outside of the button

 MouseHover: The mouse cursor is inside the button, but the left mouse button is not

pressed.

 MouseDown: The mouse cursor is inside the button and the left mouse button is pressed.

Class BaseButton

 Attributes: Methods:
Location : Point Function Clicked : String
Size : Size DrawDefault
MouseHover : Boolean DrawMouseHover
MouseDown : Boolean DrawMouseDown
 Draw

The MouseHover and MouseDown Boolean variables are used to determine which state the button

is in at any time.

Mechanics Simulator 2014

Matthew Arnold 24 Candidate Number - 7061

If the user released the mouse button whilst keeping the cursor in the button, the button’s Clicked

function would return “Clicked”. Otherwise, this function would return the state name

(“MouseDown” or “Hover”) or “” if the button is in the default state.

The Draw procedure would choose which one of the three other drawing procedures to call based

on which state the button is in.

Class TextButton (Inherits BaseButton)

 Attributes: Methods:
Text: String New
Private BorderThickness : Integer New
Private Colours : Color DrawDefault
Private TextFont : Font DrawMouseHover
 DrawMouseDown

The Colours attribute represents all of the different colours associated with different parts of the

button. These are the border, background and text colours for the three different states of each

button.

The TextButton class has two possible overloading New procedures. This is because they both have

different parameters. One of them allows for complete customisation of the various states’ colours,

and the other asks for the program section and uses the pre-set colours for the different program

sections.

Class PictureButton (Inherits BaseButton)

 Attributes: Methods:
Private DefaultImage : Image New
Private MouseHoverImage : Image DrawDefault
Private MouseDownImage : Image DrawMouseHover
 DrawMouseDown

Menus

I plan to use menus on the title screen and on both user selection screens. They will allow for easier

implementation of single click inputs where there are a lot (or a list) of related options. They will be

much easier to use than having to create a separate TextButton for each option.

Class BaseMenu

 Attributes: Methods:
Font : Font New
Location : Point AddOption
OptionY : Integer

Mechanics Simulator 2014

Matthew Arnold 25 Candidate Number - 7061

Options : List(Of String)
Colours : Color
DropShadow : Boolean

Class AlignLeftMenu (Inherits BaseMenu)

 Attributes: Methods:
 Function Update : String
 Draw

Class AlignCentreMenu (Inherits BaseMenu)

 Attributes: Methods:
 Function Update : String
 Draw

The difference between the two subclasses is probably obvious from their names: how they are

drawn. The inherited Location variable will either represent the point of the top left corner of the

menu, or the top centre point on the menu.

Text Boxes

As explained in the validation section, I will have two different types of text boxes: one for writing,

and one for numbers.

Class NumberBox

 Attributes: Methods:
Text : String New
Location : Point Function HandleInput: String
Private Size : Size Draw
Private BorderThickness : Integer
Private MaxChars : Integer
Private Font : Font
Focused : Boolean
ReachedMaxChars : Boolean
Private DefaultBorderColour : Color
Private FocusedBorderColour : Color

Mechanics Simulator 2014

Matthew Arnold 26 Candidate Number - 7061

Class WritingBox

 Attributes: Methods:
Text : String New
Location : Point Function HandleInput : String
Private Size : Size Draw
Private BorderThickness : Integer
Private MaxChars : Integer
Private Font : Font
Focused : Boolean
ReachedMaxChars : Boolean
Private DefaultBorderColour : Color
Private FocusedBorderColour : Color

In both classes, the HandleInput function will perform validation for allowed inputs for the

respective text box type and will return “Entered” if the user has pressed the enter key.

Screens

For my program, a screen is not necessarily the whole view, but a distinct part of it which deserves

its own separate procedures for drawing, updating and handling input and therefore deserves its

own class.

For example, on the title screen (the design of which is in the drawing below) there will be four

screens being enabled at once:

 One for the title and menu on the right

 One for the Simulation Button

 One for the Test Button

 One for the My Progress Button

Mechanics Simulator 2014

Matthew Arnold 27 Candidate Number - 7061

Class BaseScreen

 Attributes: Methods:
Name : String HandleInput
State : ScreenState Update
Location : Point Draw
 Unload

ScreenState is a custom enumeration with the possible options of Active, Hidden, NoInput, Sleep,

ShutDown. These screen states are explained in the Screen Manager section.

Class Debug (Inherits BaseScreen)

 Attributes: Methods:
ScreenLists : List(Of String) New
Output : String HandleInput
Private fpsCounter : Integer Update
Private fpsTimer : Date Draw
Private fpsText : String

The point of the debug screen is for me to be able to see various data about the program while it

runs, such as the fps (frames per second) and the current enabled screens. It will help with

debugging as I will be able to see useful information without having to insert breakpoints into the

code. The ScreenLists strings will each contain a list of the current screens which are in a certain

state. The debug screen will always be enabled.

Settings

Mechanics Simulator 2014

Matthew Arnold 28 Candidate Number - 7061

Class MyProgressReport (Inherits BaseScreen)

 Attributes: Methods:
Private TestReports : List(Of TestReportInfo) New
Private AverageScore : Integer Private Function GetAverageScore : Integer
Private FirstTestDate : Date Private SetGraphPoints
Private RecentTestDate : String HandleInput
Private CornerMenu : AlignLeftMenu Draw
Private GraphButtons : List(Of TextButton)
Private GraphPoints() : Point
Private CurrentCategory : String

In the My Progress Report, TestReportInfo is a record representing one test report. This list is

populated when the class reads the current user’s progress text file and processes the data.

Structure TestReportInfo

 Attributes:
Title : String
Score : Integer
CompletionDate : Date

The SetGraphPoints procedure will see which graph category is currently selected and look through

the list of Test Reports and create an array of points to be plotted on the graph.

Class Settings (Inherits BaseScreen)

 Attributes: Methods:
Private PreviousScreens : List(Of BaseScreen) New
Private BackButton : TextButton HandleInput
Private BorderColourSelector : TextButton Draw
Private EnableDebugToggling : TextButton

The PreviousScreens list will hold a list of all of the enabled screens before navigating to the settings

screen. This means that when the back button is pressed, the program knows which screens to load

up again.

Class ForcesOnSlopes (Inherits BaseScreen)

 Attributes: Methods:
Private MenuButton : TextButton New
Private SettingsButton : TextButton HandleInput
Private PlayButton : TextButton Private GetValuesFromSim
Private PauseButton : TextButton Update
Private StopButton: TextButton Draw
Private VariableBoxes : List(Of NumberBox)
Private Simulation : ForcesOnSlopesSimulation

Mechanics Simulator 2014

Matthew Arnold 29 Candidate Number - 7061

The variable boxes list will contain all of the number boxes that the user will use to input or see the

variables of the simulation. Examples of these for the Forces On Slopes simulation would be Mass,

Friction and Slope Angle.

The GetValuesFromSim procedure will update the variable number boxes to display their correct

current respective information from the simulation.

Class ProjectileMotion (Inherits BaseScreen)

 Attributes: Methods:
Private MenuButton : TextButton New
Private SettingsButton : TextButton HandleInput
Private PlayButton : TextButton Private GetValuesFromSim
Private PauseButton : TextButton Update
Private StopButton: TextButton Draw
Private VariableBoxes : List(Of NumberBox)
Private Simulation : ProjectileMotionSimulation

Class ResolvingForces (Inherits BaseScreen)

 Attributes: Methods:
Private MenuButton : TextButton New
Private SettingsButton : TextButton HandleInput
Private PlayButton : TextButton Private GetValuesFromSim
Private PauseButton : TextButton Update
Private StopButton: TextButton Draw
Private VariableBoxes : List(Of NumberBox)
Private Simulation : ResolvingForcesSimulation

Class SimulationMenu (Inherits BaseScreen)

 Attributes: Methods:
Private Simulations(2) : SimulationInfo New
Private MainMenuButton : TextButton HandleInput
Private SettingsButton : TextButton Draw

In the simulation menu, SimulationInfo is a structure which contains information about each

simulation in the list.

Structure SimulationInfo

 Attributes:
Title : String
Description : String
LaunchButton : TextButton
Location : Point
Enabled : Boolean

Mechanics Simulator 2014

Matthew Arnold 30 Candidate Number - 7061

Class ForcesOnSlopesSimulation (Inherits BaseScreen)

 Attributes: Methods:
Finished : Boolean New
Scale : Double ResetVariables
g : Double SetTestVariables
T : Double Function Metres : Double
TTimer : Date Function Pixels : Double
Enabled : Boolean Update
SimulationVariables : List(Of Single) Draw

Class ProjectileMotionSimulation (Inherits BaseScreen)

 Attributes: Methods:
Finished : Boolean New
Scale : Double ResetVariables
g : Double SetTestVariables
T : Double Function Metres : Double
TTimer : Date Function Pixels : Double
Enabled : Boolean Update
SimulationVariables : List(Of Single) Draw

Class ResolvingForcesSimulation (Inherits BaseScreen)

 Attributes: Methods:
Finished : Boolean New
Scale : Double ResetVariables
g : Double SetTestVariables
T : Double Function Metres : Double
TTimer : Date Function Pixels : Double
Enabled : Boolean Update
SimulationVariables : List(Of Single) Draw

All of the simulation screens will not take up the whole view, because there needs to be room for

the variable input screens to be drawn.

The SimulationVariables list would contain all of the appropriate variables for the simulation. This

could include things like mass, velocity and angle. Each simulation would obviously need different

variables.

The ResetVariables procedure will set all simulation variables to preset values which indicate the

start of the simulation. This procedure would be called when the user clicks the stop button. The

SetTestVariables procedure would only be used when the simulation is being used for the test mode.

This would take the randomly generated initial variables from the test screen as parameters and

update the simulation’s variables.

Mechanics Simulator 2014

Matthew Arnold 31 Candidate Number - 7061

Class TestMenu (Inherits BaseScreen)

 Attributes: Methods:
Private MainMenuButton : TextButton New
Private SettingsButton : TextButton HandleInput
Private RandomTestButton : TextButton Draw
Private Tests() : TestInfo

TestInfo will be a structure, similar to the SimulationInfo structure for the simulation menu. It

contains data about one test to choose from in the list on the menu.

Structure TestInfo

 Attributes:
Title : String
AverageScore : Integer
TestButton : TextButton
Location : Point
Enabled : Boolean

Class ForcesOnSlopesTest (Inherits BaseScreen)

 Attributes: Methods:
Private MenuButton : TextButton New
Private SettingsButton : TextButton HandleInput
Private AnswerBoxes : List(Of NumberBox) Update
Private MarkButton : TextButton Draw
Private CorrectAnswers() : Decimal
Private Simulation : ForcesOnSlopesSimulation
Private Report : TestReport
Private InitialVariables () : Single

Class ProjectileMotionTest (Inherits BaseScreen)

 Attributes: Methods:
Private MenuButton : TextButton New
Private SettingsButton : TextButton HandleInput
Private AnswerBoxes : List(Of NumberBox) Update
Private MarkButtons : List(Of TextButton) Draw
Private CorrectAnswers() : Decimal
Private Simulation : ProjectileMotionSimulation
Private Report : TestReport
Private InitialVariables () : Single

Mechanics Simulator 2014

Matthew Arnold 32 Candidate Number - 7061

Class ResolvingForcesTest (Inherits BaseScreen)

 Attributes: Methods:
Private MenuButton : TextButton New
Private SettingsButton : TextButton HandleInput
Private AnswerBoxes : List(Of NumberBox) Update
Private MarkButton : TextButton Draw
Private CorrectAnswers() : Decimal
Private Simulation : ResolvingForcesSimulation
Private Report : TestReport
Private InitialVariables () : Single

In the tests, the InitialVariables array will be a list of all of the starting variables needed for the test’s

simulation. These will be semi-randomly generated in the New procedure. The Correct answers to

the question will also be calculated in the New procedure.

Class TestReport (Inherits BaseScreen)

 Attributes: Methods:
Private AnotherTestButton : TextButton New
Private CompletionDate : Date Update
Private TestName : String Draw
Private Parts : List(Of TestQuestionPart)
Private TotalAchieved : Integer
Private TotalOutOf : Integer

The Test Report screen will be part of each Test screen and will be enabled once the test has been

completed. It will show information about the test, including the score for each part, to total score

as a percentage and the time of completion. The New procedure will append the test report in the

correct format to the user’s progress text file.

Structure TestQuestionPart

 Attributes:
ScoreAchieved : Integer
ScoreOutOf : Integer

Class Title (Inherits BaseScreen)

 Attributes: Methods:
Private CornerMenu : AlignLeftMenu New
 HandleInput
 Draw

The TitleScreenTitle screen is responsible for the top quarter of the title screen, including the title

and the settings/exit menu in the top right corner.

Mechanics Simulator 2014

Matthew Arnold 33 Candidate Number - 7061

Class MyProgressButton (Inherits BaseScreen)

 Attributes: Methods:
Private MouseHover : Boolean New
Private AniTimer : Date Update
Private AniCount : Integer HandleInput
Private GraphCoverSrcRect : Rectangle Draw
Private GraphCoverX : Integer
Private WellDoneAlpha : Integer
Private GoodJobAlpha : Integer

Class SimulationButton (Inherits BaseScreen)

 Attributes: Methods:
Private MouseHover : Boolean New
Private AniTimer : Date Update
Private AniCount : Integer HandleInput
Private LTriangle(2) : Point Draw
Private IRect : Rectangle
Private MassRect : Rectangle
Private ProjectileRect : Rectangle

Class TestButton (Inherits BaseScreen)

 Attributes: Methods:
Private MouseHover : Boolean New
Private AniTimer : Date Update
Private AniCount : Integer HandleInput
Private TickPoints(1,2) : Point Draw
Private CrossPoints(3) : Point
Private TickAlpha(1) : Integer
Private CrossAlpha : Integer

The three classes above are for the other quarters of the title screen. They will be for the three large

animated buttons that navigate to the three sections of the program: Simulation, Test and My

Progress. Although all three of them look different, they will work in the same way. They each have

the integer variable AniCount. This will start at 0. If the mouse hovers over a button, its AniCount will

gradually increase up to a limit of 100. If the mouse cursor is not in a button its AniCount will

decrease down to a minimum of 0. The AniCount variable represents how far along a button is in its

animation, as a percentage. This will give the effect of the animation playing in reverse while the

cursor is not on the button.

Mechanics Simulator 2014

Matthew Arnold 34 Candidate Number - 7061

Class UserSelection (Inherits BaseScreen)

 Attributes: Methods:
Protected MenuButton : TextButton Protected RefreshExistingUserLists
Protected NewUserBox : WritingBox HandleInput
Protected CreateUerButton : TextButton Protected Advance
Protected UserLists : List(Of AlignLeftMenu) Draw
Protected Users : List(Of String)
Protected UserAlreadyExistsError : Date
Protected SectionColour : Color

Since the Test and My Progress user selection screens will be identical apart from their colour and

where they navigate to, I will create a User Selection base class. The RefreshExistingUserLists

procedure will look in the directory where all user text files are and add the name of the file (without

the “.sv” file extension) to the Users list.

The Advance procedure holds the code to unload the selection screen and load the next screen. This

procedure needs to be overridden by each of the subclasses because it will be different for both: the

TestUserSelection screen will navigate towards the Test menu and the MyProgressUserSelection

screen will navigate towards the My Progress report.

Class MyProgressUserSelection (Inherits UserSelection)

 Attributes: Methods:
 New
 Advance

Class TestUserSelection (Inherits UserSelection)

 Attributes: Methods:
 New
 Advance

Screen Manager

Class ScreenManager

 Attributes: Methods:
Private Screens : List(Of BaseScreen) New
Private NewScreens : List(Of BaseScreen) Update
Private DebugScreen : Debug Draw
 SetDebugOutputMessage
 AddScreen
 SetScreenState
 UnloadScreen

The screen manager will be instantiated as soon as the program starts running. Its purpose will be to

hold a list of all of the enabled screens and to call their HandleInput, Update, and Draw procedures

depending on which state they are in. The different possible screen states are:

Mechanics Simulator 2014

Matthew Arnold 35 Candidate Number - 7061

State Call HandleInput? Call Update? Call Draw? Other Info

Active Yes Yes Yes Default State
Hidden Yes Yes No

NoInput No Yes Yes
Sleep No No No

ShutDown No No No Removed when Screen Manager next updates

The Update procedure will remove any screens which are in the ShutDown state, add any screens

that are in the NewScreens list, and call the HandleInput and Update procedures for all applicable

screens. The Draw procedure will call the Draw procedure in all screens in the Active or NoInput

states.

The AddScreen procedure will add a new instance of a screen to the NewScreens list. The purpose of

the NewScreens list is so that new screens can be added before the Update and HandleInput loop

starts.

The UnloadScreen procedure will set a screen’s state to ShutDown.

User Interface Design
Throughout the program, I plan on keeping a consistent colour scheme. Any screens to do with the

simulation section would be dominated by blue, Test with red and My Progress with green. I think

that this will be important because it will separate the different sections, and will make the program

as a whole look more professional. In my design drawings, I have not included all of the colours that I

intend on using in the program, but the colours that I feel will be important.

Main Menu

Mechanics Simulator 2014

Matthew Arnold 36 Candidate Number - 7061

The Main Menu will have three main buttons, one to go to each of the three main sections. I think

that it would be good if the buttons had some kind of animation when the mouse rolled over them.

For example, on the My Progress button, the graph would be an empty set of axes by default, but

the line would appear to be drawn as the mouse rolled over it. Also, on the Simulation button,

various parts would move, such as the letter ‘I’ being raised and the ‘L’ being inclined. A ball will fly

across the top left of the simulation button as well. I could use the first half of a sine oscillation for

one arc, or use a |sine| oscillation for the ball to bounce once half-way. I think that this design

feature would make this screen more interesting to my target group (Mechanics students and

teachers), since they would probably be interested in things that move.

Simulation

Above is the simulations menu screen. It will be shown after the user clicks the simulation button on

the main menu. I think that it is very important to have an image to preview the simulation as well as

the title and description of each simulation, because it gives the user a much better idea of what it’s

going to be like before they run it. I also think that having pictures for each simulation would make

this screen look more interesting, and encourage users to try them out.

Mechanics Simulator 2014

Matthew Arnold 37 Candidate Number - 7061

Mechanics Simulator 2014

Matthew Arnold 38 Candidate Number - 7061

Above are three example screens for actual simulations: Projectile Motion, Resolving Forces and

Forces on Slopes. These would be accessed from the Simulations menu screen. Each simulation that I

make will have the same general design:

The strip along the top would have the title of the simulation on the left, then play, pause and stop

buttons and settings and menu buttons on the right. The simulation running control buttons will be

quite big so that they are obvious and easy to click. The play and pause buttons are self-explanatory

and the stop button would pause the simulation, then reset it to its initial condition.

Down the left side of the screen will be where the user can view and change variables or constants

about the simulation before running it. Sliders will be used for some variables’ input to make it

easier and as a form of validation. It would make sure users don’t enter ridiculous values that could

potentially cause the simulation to crash, or not be useful. An example of where a slider could be

appropriate is in the projectile motion simulation. There needs to be a gap in the wall, and users will

be able to change the Y-position of the edges of the gap. A slider could ensure that the gap doesn’t

ever have a negative width.

The rest of the screen, bounded by the blue lines, will be for the simulation itself. An important

feature of the simulations will be arrows to show directions of appropriate vector quantities, such as

forces on objects or velocities of objects. For the projectile motion simulation, I may also add an

‘ant-trail’ path to show the trajectory behind the projectile.

Mechanics Simulator 2014

Matthew Arnold 39 Candidate Number - 7061

Test Mode

My choice of red for the Test Mode section was due to its connotation of seriousness and

importance. If the user is taking a ‘test’, they are being serious and no longer playing around.

Above is the user selection screen for the Test Mode. This will be shown when the user clicks on the

Test button on the main menu, and before advancing to the Test Mode menu. Since the test mode

will ultimately save data to the user’s progress file, it needs to know which user is taking the test so

it knows which file to write to.

The new username text box will need to have some sort of validation. Because the user’s username

will be used for the name of their progress file, they shouldn’t be allowed to input characters that

would not be appropriate in a filename (e.g. \ /:*?"<>|.). Also, there should be a check to make sure

that a user cannot create a new username that is exactly the same as one which already exists.

Mechanics Simulator 2014

Matthew Arnold 40 Candidate Number - 7061

Above is the Test Mode menu, which will be seen after the user is selected. I think that it will be

useful to show the user’s average score for each category. This means that the user will be able to

see which categories they are doing worst on, and maybe encourage them to try more tests on

those. There would also be an option for the user to be tested on a random category.

Above is an example of the first phase of a test for Projectile Motion. The design of a test is very

similar to that of a simulation. The actual simulation window, the title and the settings and menu

buttons are in exactly the same places. Instead of the play, pause and stop buttons, there is a big

Mechanics Simulator 2014

Matthew Arnold 41 Candidate Number - 7061

piece of text saying ‘TEST’. Instead of the variables and constants, there is the test question itself.

The only other design difference is obviously the colour, red instead of blue.

The first phase is the answering phase, which shows the ‘first frame’ of the simulation to illustrate

the initial conditions.

Above is the second phase of a test. After the user answers the question, and after the simulation

finishes running to show the user what happens, the simulation part of the screen will be replaced

with the report. I have decided to do this and not have an entirely new screen because the user will

be able to see their answers to the questions as well as their mark to each part. At this point, the

program also saves the user’s test result in their progress file.

My Progress

I decided to use green for the My Progress section because of its association with positivity, and

friendliness. Since the user would be getting feedback, I think it is a good idea to present it to them

in a positive and encouraging way.

Mechanics Simulator 2014

Matthew Arnold 42 Candidate Number - 7061

The My Progress section will also need to find out the current user of the program, since it will be

reading their file and processing the data in it. It will be exactly the same as the Test Mode user

selection screen except for the colour (green instead of red). For both of the user selection screens,

the list of existing users on the left will be sorted by how many tests they have done, in a descending

order. This means that the most frequent users should be shown at the top, and, on average, users

will therefore be able to find themselves more easily.

Mechanics Simulator 2014

Matthew Arnold 43 Candidate Number - 7061

Above is user progress report. The top half of this screen shows overall user data and the graph on

the bottom half will be specific for each test/simulation category. The user would select one of the

categories to the left of the graph and a graph would be drawn specifically for the category. At the

moment, I plan on drawing a line graph with the data, but if this proves too difficult to do using my

graphics system, I could draw a bar chart instead, which would be easier. The x-axis on the graph will

not be an accurate, to-scale representation of time, but rather the number of the test taken. The

points will however be represented in chronological order.

Settings

My hand-drawn designs of the various user interface features for my program include a button

directing to a ‘settings’ screen. I will make a settings screen for any user options that I may wish to

include in the program when creating it.

Security of Data
The data stored by my program will be the user progress data in the various user progress text files.

Although the information about the users won’t be particularly personal to them, it is still a good

idea to have some security measures in place. I will encrypt the user progress data, to stop people

‘cheating’ and pretending that they have progressed further than they have. If the data isn’t

encrypted, people may be able to work out what the data means, and could easily change bits of it

to their benefit. When it’s encrypted, if they decide to change something (to see what happens) the

decryption algorithm shouldn’t work, and the program would know that the data is corrupted. I will

make my own algorithm for encryption/decryption.

System Security
The program itself will not have a great need to be really secure, as it is intended as a tool for

revision that anyone could use. It will not just be the teacher using the program for lesson

demonstrations, but also students, if they want to learn or test themselves in their own time. For

this reason, a whole program security system (such as a password to open the program) would not

be needed.

Overall Test Strategy
My general testing method will be black-box testing. I will test the program using strategically

chosen inputs and check that it responds correctly (for example, give errors at the right time). If the

program crashes unexpectedly, I would use a white-box testing method, by following through the

code at certain points using break-points to see where the error occurs. If this still doesn’t seem to

help me understand the problem, I will do a dry run on paper of the particular piece of code.

The important sub-systems that will need testing are:

 Making sure that the test mode text file data is saved in a format that can be read correctly,

and that the encryption/decryption of the files works correctly.

 ‘Extreme’ values for the simulation initial conditions

 Validation for creating a new user

 Saving into the user’s text file after a test

Mechanics Simulator 2014

Matthew Arnold 44 Candidate Number - 7061

System Testing

Test Series Purpose/Description

1 Navigation between screens of the program

2 Validation of Input in the Projectile Motion simulation

3 Validation of Input in the Resolving Forces simulation

4 Validation of Input in the Forces On Slopes simulation

5 Writing to a User’s Data string

6 Interpreting a User’s Data String

7 Encryption and Decryption

8 File Reading and Writing

9 Creating a new User name

10 Test Mode

11 Program Settings

Test Series 1

Test
Series

and
Number

Purpose/
Description

Test Data
and Type

Expected Result Actual Result

1.1 Buttons
should be
able to be
used to go
between
screens

Typical:
Clicking on
the ‘Menu’
button in
the
Projectile
Motion
simulation

Screen change to the
simulation menu

Screen change to the
simulation menu

1.2 The user
should be
able to exit
the program
from the
title screen

Typical:
Clicking
‘Exit’ on
the title
screen

Program terminates Program terminates

1.3 Selecting a
user from a
user
selection
screen
should
advance to
the next
screen

Typical:
Click on a
user name
from the
‘My
Progress’
user
selection
screen

Screen change to progress
report for the selected user

Screen change to progress
report for the selected user

1.4 Completing
a test
should
cause the

Typical:
Completing
a test for
Projectile

Simulation screen changes
to test report screen

Simulation screen changes
to test report screen

Mechanics Simulator 2014

Matthew Arnold 45 Candidate Number - 7061

The purpose of this Test Series was to test the types of navigational features of the program which

took the user between screens.

simulation
screen to be
replaced
with the test
report
screen

Motion
and
waiting for
the
simulation
to finish

Test 1.1

Test 1.2

Mechanics Simulator 2014

Matthew Arnold 46 Candidate Number - 7061

Test Series 2

Test
Series

and
Number

Purpose/
Description

Test Data
and Type

Expected Result Actual Result

2.1 Horizontal
Distance

Boundary:
Attempt
to enter
0m for the
horizontal
distance

Unknown Program crashes due to
dividing by zero when trying
to calculate the pixels-to-
metres scale factor from the
horizontal distance

2.2 Horizontal
Distance
after code
changed

Boundary:
Attempt
to enter
0m for the
horizontal
distance

No crash No crash, and the value for
the horizontal distance
changes back to what it was
before (30m)

2.3 Changing
the firing
angle should
update the
components
of the initial

Typical:
Change
the angle
to 20
degrees

Velocity X and Y
components update so that
X = 25cos(20) = 23.49 and Y
= 25sin(20) = 8.55

Velocity X and Y
components update so that
X = 25cos(20) = 23.49 and Y
= 25sin(20) = 8.55

Test 1.3

Test 1.4

Mechanics Simulator 2014

Matthew Arnold 47 Candidate Number - 7061

The purpose of this test series was to look at the Projectile Motion simulation (from the simulation

section) and test different values for some of the available initial conditions.

I have now changed the code at this point to only handle the horizontal distance number box when a

value greater than 0 is entered.

velocity

Test 2.1

Test 2.2

Mechanics Simulator 2014

Matthew Arnold 48 Candidate Number - 7061

Test Series 3

Test
Series

and
Number

Purpose/
Description

Test Data
and Type

Expected Result Actual Result

3.1 The friction
of m1 must
be less than
or equal to
the m2 mass
multiplied
by gravity
(9.8ms-2)

Boundary:
m2 mass =
2kg.
Attempt
to enter
19.7N for
friction of
m1

No crash, and the friction is
set to 2 x 9.8 = 19.6N

No crash, and the friction is
set to 2 x 9.8 = 19.6N

3.2 The friction
of m1 must
be less than
or equal to
the m2 mass
multiplied
by gravity
(9.8ms-2)

Boundary:
m2 mass =
2kg.
Attempt
to enter
19.6N for
friction of
m1

No crash, 19.6N accepted
and acceleration updated to
0ms-2

No crash, 19.6N accepted
and acceleration updated to
0ms-2

3.3 The friction
of m1 must

Boundary:
m2 mass =

No crash, 19.5N accepted
and acceleration and

No crash, 19.5N accepted
and acceleration and

Test 2.3

Mechanics Simulator 2014

Matthew Arnold 49 Candidate Number - 7061

The purpose of this test series was to look at the Resolving Forces simulation (from the simulation

section) and test different values for some of the available initial conditions.

be less than
or equal to
the m2 mass
multiplied
by gravity
(9.8ms-2)

2kg.
Attempt
to enter
19.5N for
friction of
m1

tension updated tension updated. No
screenshot because there is
no change to the screen

3.4 Vertical
Distance

Boundary:
Attempt
to enter
0m for the
vertical
distance
from m2
to ground

No crash No crash and the value for
the vertical distance
changes back to what it was
before (0.8m). No
screenshot because there is
no change to the screen

Test 3.1

Mechanics Simulator 2014

Matthew Arnold 50 Candidate Number - 7061

Test Series 4

Test
Series

and
Number

Purpose/
Description

Test Data
and Type

Expected Result Actual Result

4.1 Distance to
Wall

Boundary:
Attempt to
enter 0m
for the
distance
from the
mass to
the wall

No crash No crash and the value for
the distance changes back
to what it was before (1m).

4.2 Slope Angle Erroneous:
Attempt to
enter an
angle
greater
than 90°
(100°)

Unknown No crash, but the resulting
simulation looks silly, and
the block still sticks to the
slope when the play button
is pressed. This is a
physically impossible
situation, and therefore one
which needs to be
prevented. I changed the
code to only accept angles
between 0° and 90°

Test 3.2

Mechanics Simulator 2014

Matthew Arnold 51 Candidate Number - 7061

The purpose of this test series was to look at the Forces On Slopes simulation (from the simulation

section) and test different values for some of the available initial conditions.

4.3 Slope Angle
after change
in code

Erroneous:
Attempt to
enter an
angle
greater
than 90°
(100°)

No change. Angle should go
back to what was before the
attempt to change it

Angle returns to what it was
before (45°). No screenshot
because there was no
change

Test 4.1

Mechanics Simulator 2014

Matthew Arnold 52 Candidate Number - 7061

Sliders
In my original design for all of the Simulations, I had intended to create sliders as a form of input

which could also act as an effective form of validation for some variables (such as distances).

However, in the creation of my program, I decided against this for two reasons. The first was that

the validation methods of my text boxes are sufficient. The second is that it would be difficult to

implement a slider which was small enough to fit on the screen, as well as accurate enough for easily

inputting values up to two decimal places. If I created sliders as accurate as I wanted, they would

have needed to be too long to fit on the screen.

Test Series 5

Test
Series

and
Number

Purpose/
Description

Test Data
and Type

Expected Result Actual Result

5.1 To put the
three fields
of the test
report
together in
the correct
format

Typical: A
test report
for
projectile
motion,
with a
score of
50%

Category,Score,TimeScored| Category,Score,TimeScored|

Test 4.2

Mechanics Simulator 2014

Matthew Arnold 53 Candidate Number - 7061

This Test Series looked at the Test section of the program. Its purpose was to make sure that the

program could successfully append a test report to the user’s existing progress data string. For this

test, I made the program show the contents of variables using message boxes, since the processing

would, in reality, be done without any output visible to the user.

5.2 To append
the small
string
created to
the end of
the User’s
existing data
string

Typical: A
typical
User date
string and
the result
from test
5.1

A user data string in the
correct form

A user data string in the
correct form

Test 5.1

Test 5.2

Mechanics Simulator 2014

Matthew Arnold 54 Candidate Number - 7061

Test Series 6

This Test Series looked at the My Progress section of the program, and how a User’s data string

(saved in their progress text file) is understood by it.

Test Series and
Number

Purpose/
Description

Test Data and
Type

Expected Result Actual Result

6.1 To split the full
string into
individual test
reports

Typical: A typical
user’s test data
string for 4 tests,
saved in
chronological
order with more
than one category

A list of separate
test report data
strings

A list of separate
test report data
strings

6.2 To split the
individual test
report data into
Category, Score
and Completion
Date

Typical: The
result from test
6.1

For each item in
the list of test
Reports, a list of
the three fields

For each item in
the list of test
Reports, a list of
the three fields

6.3 To analyse the
User’s past test
reports to find
the dates of the
first and last tests

Typical: A typical
user’s text file

The correct
starting and most
recent test dates
shown on the My
Progress screen

The correct
starting and most
recent test dates
shown on the My
Progress screen

6.4 To analyse the
User’s past test
reports to find
the average score

Typical: A typical
user’s text file

The correct
average score
across all tests
shown on the My
Progress screen

The correct
average score
across all tests
shown on the My
Progress screen

6.5 To analyse the
User’s past test
reports to find
the best and
worst categories
by finding the
average score for
each category.

Typical: A typical
user’s text file

The correct best
and worst
categories shown
on the My
Progress screen

The correct best
and worst
categories shown
on the My
Progress screen

Mechanics Simulator 2014

Matthew Arnold 55 Candidate Number - 7061

For tests 6.1 and 6.2, I temporarily added code to make the program output the values needed for

testing purposes. This message box wouldn’t normally show.

Test 6.1

Test 6.2

Mechanics Simulator 2014

Matthew Arnold 56 Candidate Number - 7061

Test Series 7

Test
Series

and
Number

Purpose/
Description

Test Data
and Type

Expected Result Actual Result

7.1 The Encrypt
procedure
should
correctly
encrypt a
string by the
algorithm
shown in
the Design
section

Typical:
“Hello”

“Nrk6ur” “Nrk6ur”

7.2 The Decrypt
procedure
should
correctly
decrypt an
encrypted
string by the
algorithm
shown in

Typical:
“Nrk6ur”

“Hello” “Hello”

Test 6.3

Test 6.4

Test 6.5

Mechanics Simulator 2014

Matthew Arnold 57 Candidate Number - 7061

This Test Series looked at Encryption and Decryption. Its purpose was to make sure that each step in

the encryption and decryption procedures correctly manipulated the strings in the way that they

were supposed to, and to see how they handled a cypher text which had been tampered with.

the Design
section

7.3 To see if
both
procedures
can work
together to
encrypt and
decrypt a
typical user
string
(longer than
just the
word
“Hello”)

Typical: A
typical
user’s data
string

Return to the exact string
before the process started

Return to the exact string
before the process started

7.4 To see how
the program
handles
trying to
decrypt a
user’s data
string which
has been
tampered
with

Erroneous:
A
decrypted
user data
string with
a single
“a” added
on the end

An error message, followed
by the program continuing
to run (i.e. not crashing)

An error message, followed
by no crash. The program
continued as if the user’s
data file had been empty
(like a new user). A
subsequent test would
overwrite the existing data,
thus clearing the correcting
the error.

Mechanics Simulator 2014

Matthew Arnold 58 Candidate Number - 7061

For test 7.1, I did a dry run for the encryption algorithm on paper, so that I could make sure each

step of the algorithm in the program worked correctly.

Test 7.1

Mechanics Simulator 2014

Matthew Arnold 59 Candidate Number - 7061

Test 7.1

Mechanics Simulator 2014

Matthew Arnold 60 Candidate Number - 7061

As with test 7.1, I did a dry run for the decryption algorithm.

Test 7.2

Mechanics Simulator 2014

Matthew Arnold 61 Candidate Number - 7061

Test 7.2

Mechanics Simulator 2014

Matthew Arnold 62 Candidate Number - 7061

Test 7.3

Test 7.4

Mechanics Simulator 2014

Matthew Arnold 63 Candidate Number - 7061

Test Series 8

Test
Series

and
Number

Purpose/
Description

Test Data
and Type

Expected Result Actual Result

8.1 The
program
should be
able to write
the user’s
encrypted
data to their
file

Typical: A
new user
completes
a test

The user’s text file written
to

The user’s text file written
to

8.2 The
program
should be
able to read
the user’s
encrypted
data from
their file

Typical:
The user’s
file from
test 8.1

The whole of the data and
nothing else is read from
the text file

The whole of the data and
nothing else is read from
the text file

Test 7.4

Mechanics Simulator 2014

Matthew Arnold 64 Candidate Number - 7061

This Test Series was to check that the program could correctly read and write from the user save

files.

Test Series 9

Test
Series

and
Number

Purpose/ Description Test Data and Type Expected Result Actual Result

9.1 The user name should not
be blank (of zero length)

Erroneous: Attempt
to enter a blank
username

No user created No user created,
and text box
becomes
unfocused

9.2 The user name should not
be longer than 10
characters

Erroneous: Attempt
to enter a username
longer than 10
characters:
12345678901

Any character
after 10 doesn’t
show up and
the 10 character
limit is
highlighted

Any character
after 10 doesn’t
show up and the
10 character
limit is
highlighted

9.3 The user name should not
contain characters other
than lower and uppercase
letters or numbers

Erroneous: Attempt
to enter a username
with invalid
characters:
bad_User_!

Any invalid
character that is
tried to be
entered doesn’t
show up in the
text box

Only the valid
characters show
up. The “!” is
read as “1”

9.4 The username should not be
identical to one which
already exists

Erroneous: Attempt
to enter two
identical usernames:
TestUser1

The first user is
created
normally, but
the second
doesn’t work

The first user is
created, but the
second user
causes an error
message

9.5 For a valid user name, the
text file should be created
with the path
“C:\Users\%pcUser%\Documents\

Typical: Attempt to
enter a valid
username: TestUser1

Empty text file
created at the
correct location

Empty text file
created at the
correct location

Test 8.1

Test 8.2

Mechanics Simulator 2014

Matthew Arnold 65 Candidate Number - 7061

This test series was for testing all of the processes associated with creating a new user profile for the

program. This includes validation for the user name, as well as creating the text file for that user. For

testing, only the test mode user selection screen was used, but all of the tests would apply to the My

Progress user selection screen, as it is the same apart from the colour.

Mechanics
Simulation\Users\%newUsername

%.sv”

9.6 After a new user is created,
the username should be
visible on the user list to
login immediately

Typical: Attempt to
enter a valid
username: TestUser1

Username
visible on the
left user list
instantly

Username
visible on the
left user list
instantly

Test 9.2

Mechanics Simulator 2014

Matthew Arnold 66 Candidate Number - 7061

Test 9.3

Mechanics Simulator 2014

Matthew Arnold 67 Candidate Number - 7061

Test 9.4

Test 9.5

Mechanics Simulator 2014

Matthew Arnold 68 Candidate Number - 7061

Test Series 10

Test
Series

and
Number

Purpose/
Description

Test Data and Type Expected Result Actual Result

10.1 To check that
the answers for
a Projectile
Motion test are
calculated
correctly

Typical: Answers correct to
at least 2 decimal places are
input

Program recognises correct
answers and marks the test
with 100%

Program
recognises
correct answers
and marks the
test with 100%

10.2 To check that
the answers for
a Resolving
Forces test are
calculated
correctly

Typical: Answers correct to
at least 2 decimal places are
input

Program recognises correct
answers and marks the test
with 100%

Program
recognises
correct answers
and marks the
test with 100%

10.3 To check that
the answers for
a Forces on
Slopes test are
calculated
correctly

Typical: Answers correct to
at least 2 decimal places are
input

Program recognises correct
answers and marks the test
with 100%

Program
recognises
correct answers
and marks the
test with 100%

Test 9.6

Mechanics Simulator 2014

Matthew Arnold 69 Candidate Number - 7061

The purpose of this test series was to look at the test section of the program. I tested each category

of test once, and tested the validation of the answer boxes.

10.4 Inputs entered
into the answer
boxes should
not contain
more than one
decimal point

Erroneous: Attempt to enter
a value with more than one
decimal place 69.4.5

The second attempt at
keying in a dot should be
ignored

69.45

10.5 Inputs entered
into the answer
boxes should
not start with a
decimal point

Erroneous: Attempt to enter
a value starting with a
decimal place: .498

The attempt at entering
the dot first should be
ignored

498

10.6 Answers should
not be given to
any less than
two decimal
places

Erroneous: Attempt to
complete the test with one
answer only given to one
decimal place

Test should not be
completed, warning at top
of screen should flash blue
and incorrect box’s border
should flash

Test not
completed,
warning at top
of screen flashes
blue and
incorrect box’s
border flashes

Test 10.1

Mechanics Simulator 2014

Matthew Arnold 70 Candidate Number - 7061

Test 10.1

Mechanics Simulator 2014

Matthew Arnold 71 Candidate Number - 7061

Test 10.2

Mechanics Simulator 2014

Matthew Arnold 72 Candidate Number - 7061

Test 10.2

Test 10.3

Mechanics Simulator 2014

Matthew Arnold 73 Candidate Number - 7061

For tests 10.1, 10.2 and 10.3, I worked through a problem from each category on paper and ensured

that my answers were correct using the correct methods. The program marked all of my answers as

correct, meaning that it must have calculated the answers correctly too.

Test 10.3

Mechanics Simulator 2014

Matthew Arnold 74 Candidate Number - 7061

Test 10.4

Mechanics Simulator 2014

Matthew Arnold 75 Candidate Number - 7061

Test 10.5

Mechanics Simulator 2014

Matthew Arnold 76 Candidate Number - 7061

Test Series 11

Test
Series

and
Number

Purpose/
Description

Test Data and Type Expected Result Actual Result

11.1 The back button on
the settings screen
should return the
user to which ever
screen(s) they came
from

Typical: Attempt to
access settings screen
from Projectile Motion
Simulation, then click
back button on settings
screen

User is returned to the
Projectile Motion
Simulation

User is returned
to the Projectile
Motion
Simulation

11.2 The Program Border
Colour Selector
should be able to be
used to change the
border colour of the
main window

Typical: Attempt to click
the colour selector and
select a pink colour

Main window border and
colour selector turns pink
(black by default)

Main window
border and
colour selector
turns pink

11.3 The Enable Debug
Toggling setting
should work

Typical: Press the F1
key, then click the
button so that it says
on, then press the F1
key again

Debug Screen only appears
when the button is toggled
to ‘on’

Debug Screen
only appears
when the button
is toggled to ‘on’

11.4 If the debug screen Typical: When the Debug Screen disappears Debug Screen

Test 10.6

Mechanics Simulator 2014

Matthew Arnold 77 Candidate Number - 7061

This purpose of this test series was to make sure that some program settings on the settings screen

worked at intended.

is visible when the
button is toggled to
‘off’, the debug
screen should
disappear

debug screen is visible,
toggle the button to
‘off’

disappears (no
screenshot
needed)

Test 11.1

Test 11.2

Mechanics Simulator 2014

Matthew Arnold 78 Candidate Number - 7061

Test 11.3

Mechanics Simulator 2014

Matthew Arnold 79 Candidate Number - 7061

System Maintenance

System Overview
I have created my program as a Windows Forms Application using the VB.NET programming

language. I used the Microsoft Visual Studio 2012 program to design and implement my program.

The diagram of images below shows the fundamental navigation between various screens in my

program. This could be compared to my screen navigation design in the design section (page 13).

Since the design stage, I have added a Settings menu*, which can be accessed from every screen

except from the User Selection screens.

*

Mechanics Simulator 2014

Matthew Arnold 80 Candidate Number - 7061

Graphics
My program does not use the conventional ‘forms design view’ approach to drawing graphics to the

screen. This is because I found this method caused lag or flickering when there are objects being

regularly moved around on the screen, which is essential for my Simulations. Instead I use a different

drawing approach.

The Main Form has a PictureBox object called Display and a Bitmap called BMP, each with a width of

960px and a height of 720px. Display can be seen by the user on the screen, but BMP is in memory

only and therefore cannot be seen. There is an object called GFX, which is of the Graphics type. This

is an in-built object type which contains loads of methods for different ways of drawing graphics. I

use this object to draw graphics to BMP, and every tick of the MainTimer, the image of Display is

updated with BMP.

The algorithm for handling all graphics drawing for my program is below:

1. Each time the MainTimer ticks, do the following

2. If the program is paused (if ProgramPause is True) then do nothing, else do the following

3. Allow the Screen Manager to Update and Handle the Input of all screens

4. Clear the Bitmap by filling it with white

5. Allow the Screen Manager to Draw all of the appropriate screens to the Bitmap

6. Update Display’s Image with the Bitmap

Below is the code in the Main form for the MainTimer tick event:

 Private Sub MainTimer_Tick(sender As System.Object, e As System.EventArgs) Handles
MainTimer.Tick
 If ProgramPause = False Then
 'UPDATE SCREENS
 ScreenManager.Update()

 'DRAW
 GFX.Clear(Color.White)

 ScreenManager.Draw()

 Display.Image = BMP
 End If
 End Sub

I think that this method of drawing is effective because the user’s view isn’t updated until all of the

drawing for a cycle has finished. The conventional Windows Forms graphics method of moving

around pre-designed objects from design view updates the user’s view each time an object is

moved. If an object is moved very frequently, or if multiple objects are being moved at once, this is

likely to cause flickering.

If I want to draw something to the screen from anywhere in the program, I need to call the

appropriate method in the GFX object on the main form. For example, to draw text onto the screen,

I would write the code

Mechanics Simulator 2014

Matthew Arnold 81 Candidate Number - 7061

Main.GFX.DrawString(Text, Font, New SolidBrush(Colour), Location)

Where Text is the Text to draw, Font is the Font to draw the text in, Colour is the colour I want the

text to be and Location is a point containing the number of pixels along and down from the top-left

corner of the Bitmap that I want the drawing to start. The important part of the code above is the

“Main.GFX.”, which is followed by and in-built drawing method.

Dragging the Main Window Around
The program window has a fixed size of 990x750 pixels. One of the features is the ability to drag the

main window around the screen. In the Main form, there is a Point variable called DragFormPos

which saves the mouse location before the window is dragged around. The algorithm for Dragging

the Main Window as created in the Design process is below:

1. If a mouse button is pressed while the mouse cursor is hovered over the program border,

save the X and Y distance of the mouse cursor position from the top-left corner of the

window

2. If the mouse is moved while the mouse button is still held down, update the window’s

position on the screen

a. The window’s X coordinate should become the mouse cursor’s X coordinate

translated to the left by the X distance saved

b. The window’s Y coordinate should become the mouse cursor’s Y coordinate

translated up by the Y distance saved

The code in the Main form which executes this code is:

 Private Sub Form_MouseDown(sender As Object, e As
System.Windows.Forms.MouseEventArgs) Handles Me.MouseDown
 DragFormPos = New Point(e.X, e.Y)
 End Sub

 Private Sub Form_MouseMove(sender As Object, e As
System.Windows.Forms.MouseEventArgs) Handles Me.MouseMove
 If Not DragFormPos = Nothing Then
 SetDesktopLocation(Windows.Forms.Form.MousePosition.X - DragFormPos.X,
Windows.Forms.Form.MousePosition.Y - DragFormPos.Y)
 End If
 End Sub

 Private Sub Form_MouseUp(sender As Object, e As
System.Windows.Forms.MouseEventArgs) Handles Me.MouseUp
 DragFormPos = Nothing
 End Sub

This code sets the DragFormPos location variable to “Nothing” when a mouse button is released.

This is the program’s way of knowing if the mouse button is still held down when the mouse moves.

Managing Screens
As introduced in the design section (Page 34), the screen manager is an object instantiated when the

program is executed whose purpose is to handle all of the program’s screens neatly and efficiently. A

screen, for my program, is a part of the user’s view. Some examples of screens include the

Mechanics Simulator 2014

Matthew Arnold 82 Candidate Number - 7061

Simulation button on the Title Screen, the Projectile Motion screen, the Projectile Motion Test and

the Test Report.

The ScreenManager class has two lists: Screens and NewScreens. The Screens list holds all of the

currently enabled screens, and the NewScreens list holds all of the screens which have been added

by other parts of the program during the current cycle. These new screens are added to the Screens

list in the next cycle.

Updating, Handling Input and Keeping a List of Screens

The algorithm for Updating and Handling Input for all of the currently enabled screens is as follows:

1. Add all screens in the NewScreens list to the main Screens list

2. Clear the NewScreens list

3. Look at a screen

4. If it is in the ShutDown screen state, remove it from the list

5. If it is in the Active or Hidden screen state, allow it to Handle Input

6. If it is not in the Sleep screen state, allow it to Update

7. Repeat steps 3 to 6 for each screen in the main Screens list

The code below shows most of the class’s Update procedure:

 Public Sub Update()
 ' GENERATE LIST OF DEAD SCREENS FOR REMOVAL
 Dim RemoveScreens As New List(Of BaseScreen)

 For Each FoundScreen As BaseScreen In Screens
 If FoundScreen.State = ScreenState.ShutDown Then
 RemoveScreens.Add(FoundScreen)
 End If
 Next

 ' REMOVE DEAD SCREENS
 For Each FoundScreen As BaseScreen In RemoveScreens
 Screens.Remove(FoundScreen)
 Next

 ' ADD NEW SCREENS TO MAIN LIST FROM THE NEW SCREENS LIST
 For Each FoundScreen As BaseScreen In NewScreens
 Screens.Add(FoundScreen)
 Next
 NewScreens.Clear()

 ' CALL INPUT AND UPDATE PROCEDURES FOR APPLICABLE SCREENS
 For Each FoundScreen As BaseScreen In Screens
 If FoundScreen.State <> ScreenState.Sleep Then
 If Main.Focused And (FoundScreen.State = ScreenState.Active Or
FoundScreen.State = ScreenState.Hidden) Then
 FoundScreen.HandleInput()
 End If
 FoundScreen.Update()
 End If
 Next
 End Sub

Mechanics Simulator 2014

Matthew Arnold 83 Candidate Number - 7061

This procedure is run every tick of the main game timer. Its basic purpose is to call the HandleInput

and Update procedures of all of the current screens. However, it also controls the addition and

removal of screens.

The procedure first creates a list and populates it with all of the screens from the Screens list which

are in the ShutDown state. It then cycles through all of the screens in this RemoveScreens list and

removes their counterparts from the main Screens list. Screens from the NewScreens list are then

added to the Screens list. At first, it may seem pointless to have so many different lists just for

handling one set of screens. However, if there was only one list of screens, the procedure would

have to eventually remove one of them whilst cycling through all of them. This would often cause

errors because the program would expect there to be more screens in the list than there actually

turn out to be. The NewScreens list is cleared after is has been used. This prevents ‘new’ screens

from becoming ‘old’ and being added at every cycle.

After removing dead screens and adding new ones, the procedure finally calls the HandleInput and

Update procedures of the screens in the Screens list, providing that they are in the appropriate

states. The Screen Manager part of the Design section explains the different possible screen states

(Page 35).

Drawing Screens

Another role of the Screen Manager as well at Handling Input and Updating screens is to draw the

correct screens. The simple algorithm for drawing screens is below:

1. Look at a screen

2. If it is in the Active or the NoInput screen state, allow it to Draw

3. Repeat steps 1 and 2 for each screen in the main Screens list

The Active and NoInput screen states are the only ones which should allow drawing of the screen.

See page 80 in this section for an explanation of how drawing works. The code in the Screen

Manager class which carries out this algorithm is shown below:

 Public Sub Draw()
 ' CALL DRAW PROCEDURE FOR APPLICABLE SCREENS
 For Each FoundScreen As BaseScreen In Screens
 If FoundScreen.State = ScreenState.Active Or FoundScreen.State =
ScreenState.NoInput Then
 FoundScreen.Draw()
 End If
 Next
 End Sub

Screen Transitions

If there needs to be a screen transition anywhere in the program, the Screen Manager’s AddScreen

and UnloadScreen procedures need to be used.

The class’s AddScreen procedure is what should be called anywhere else in the program if a new

screen needs to be enabled:

Mechanics Simulator 2014

Matthew Arnold 84 Candidate Number - 7061

 Public Shared Sub AddScreen(ByVal screen As BaseScreen)
 NewScreens.Add(screen)
 End Sub

This procedure simply adds the new screen to the NewScreen list.

The UnloadScreen procedure should be called when an enabled screen needs to be removed:

 Public Shared Sub UnloadScreen(ByVal screen As String)
 'SET THE DESIRED SCREEN'S STATE TO SHUTDOWN
 For Each FoundScreen As BaseScreen In Screens
 If FoundScreen.Name = screen Then
 FoundScreen.Unload()
 Exit For
 End If
 Next
 End Sub

A screen’s Unload procedure simply sets that screens state to ShutDown.

The following example shows how these two procedures should be used in the program to perform

a screen transition. The example is going from the Simulation Menu back to the Title Screen:

 ScreenManager.UnloadScreen("SimulationMenu")
 ScreenManager.AddScreen(New Title)
 ScreenManager.AddScreen(New SimulationButton)
 ScreenManager.AddScreen(New TestButton)
 ScreenManager.AddScreen(New MyProgressButton)

Debug Screen
The debug screen, pictured below, is a screen purely designed for the development of the program.

It can be accessed through the settings screen by clicking the button next to “Enable debug toggling”

The debug screen can now be toggled on or off by pressing the F1 key (you do not have to be

viewing the settings screen to view the debug screen).

 It shows important behind-the-scenes information about the program while it is running, such as

the number of frames per second (FPS), the states of all of the currently enabled screens, and the

mouse position relative to the top-left corner of the main display window. The “Output” part of the

debug screen can show anything. By default, it shows the KeyValue associated with the most recent

key pressed, which is useful for knowing which keys to allow when handling keyboard input.

However, the debug Output can be updated with any string by calling the

Mechanics Simulator 2014

Matthew Arnold 85 Candidate Number - 7061

Main.ScreenManager.SetDebugOutputMessage() procedure anywhere in the code. This procedure

has one parameter, which is the string that you want to display.

Encryption and Decryption

Encryption

One of the algorithms defined in my design section was the encryption function. It is used to encrypt

a user’s progress text file data before actually saving it to the text file. As in the design section, my

encryption algorithm is:

1. Generate a random integer between 1 and 4. Call this NumOfLoops

2. For NumOfLoops times(steps 3-6):

3. Move all characters 2 ASCII codes up

4. Reverse the order of the characters in the string

5. Split the string so it has ALL of the evenly indexed characters followed by the oddly indexed

characters. For example, “helloworld” would be turned into “elwrdhlool”

6. Reverse the string again

7. Put 2* NumOfLoops onto the beginning of the string

8. Repeat one iteration of steps 3 to 6

The code below shows the EncryptString function. The capitalised green comments show the steps

of the algorithm.

 Public Function EncryptString(ByVal PlainText As String) As String
 Dim asciied, reversed, split, reversed2 As String
 Dim NumOfLoops As Integer = Rand.Next(1, 4 + 1)

 If PlainText = "" Then
 Return ""
 End If

 Try
 For times = 1 To NumOfLoops

 asciied = ""
 reversed = ""
 split = ""
 reversed2 = ""

 'MOVE ALL CHARACTERS 2 ASCII CODES UP
 For i = 1 To Len(PlainText)
 asciied = asciied & Chr(Asc(Mid(PlainText, i, 1)) + 2)
 Next

 'REVERSE THE ORDER OF THE CHARACTERS IN THE STRING
 reversed = StrReverse(asciied)

 'SPLIT THE STRING SO IT AS ALL OF THE EVENLY INDEXED CHARACTERS....
 For i = 2 To Len(reversed) Step 2
 split = split & Mid(reversed, i, 1)
 Next

Mechanics Simulator 2014

Matthew Arnold 86 Candidate Number - 7061

 '....FOLLOWED BY THE ODDLY INDEXED CHARACTERS
 For i = 1 To Len(reversed) Step 2
 split = split & Mid(reversed, i, 1)
 Next

 'REVERSE THE STRING AGAIN
 reversed2 = StrReverse(split)

 PlainText = reversed2
 Next

 'PUT 2 * NumOfLoops ONTO THE BEGINNING OF THE STRING
 PlainText = 2 * NumOfLoops & reversed2

 'REPEAT ONE ITERATION OF THE ENCRYPTION
 asciied = ""
 reversed = ""
 split = ""
 reversed2 = ""

 For i = 1 To Len(PlainText)
 asciied = asciied & Chr(Asc(Mid(PlainText, i, 1)) + 2)
 Next

 reversed = StrReverse(asciied)

 For i = 2 To Len(reversed) Step 2
 split = split & Mid(reversed, i, 1)
 Next

 For i = 1 To Len(reversed) Step 2
 split = split & Mid(reversed, i, 1)
 Next

 reversed2 = StrReverse(split)

 Return reversed2
 Catch ex As Exception
 MessageBox("File Writing Error: Error with encryption.")
 Return ""
 End Try

 End Function

Decryption

Paired with the encryption function is its opposite which is essential for it to be useful: the

decryption function. Again, as in the design section, the algorithm for decryption is:

1. Reverse the string

2. Split the string into two halves. For odd length strings, first half is shorter.

3. Reconstruct the full string, by taking a character from the second half, then the first half,

then the second half etc.

4. Reverse the string again

5. Move all characters 2 ASCII codes down

6. Take the first character from the string. Divide this by two, this is the NumOfLoops

generated at encryption

Mechanics Simulator 2014

Matthew Arnold 87 Candidate Number - 7061

7. For NumOfLoops times repeat steps 1 to 5

The code below shows the DecryptString function. The capitalised green comments show the steps

of the algorithm.

 Public Function DecryptString(ByVal CipherText As String) As String
 Dim reversed, evenlySplit, oddlySplit, finalFused, reversed2, asciied As
String
 Dim NumOfLoops As Integer

 If CipherText = "" Then
 Return ""
 End If

 Try
 reversed = ""
 evenlySplit = ""
 oddlySplit = ""
 finalFused = ""
 reversed2 = ""
 asciied = ""

 'REVERSE THE STRING
 reversed = StrReverse(CipherText)

 'SPLIT THE STRING INTO TWO HALVES
 For i = 1 To Int(Len(reversed) / 2)
 evenlySplit &= Mid(reversed, i, 1)
 Next
 For i = Int(Len(reversed) / 2) + 1 To Len(reversed)
 oddlySplit &= Mid(reversed, i, 1)
 Next

 'RECONSTRUCT THE STRING, BY TAKING A CHARACTER FROM THE SECOND HALF,
 'THEN THE FIRST HALF, THEN THE SECOND HALF ETC.
 For i = 1 To Len(evenlySplit) + Len(oddlySplit)
 finalFused &= Mid(oddlySplit, i, 1) & Mid(evenlySplit, i, 1)
 Next

 'REVERSE THE STRING AGAIN
 reversed2 = StrReverse(finalFused)

 'MOVE ALL CHARACTERS 2 ASCII CODES DOWN
 For i = 1 To Len(reversed2)
 asciied &= Chr(Asc(Mid(reversed2, i, 1)) - 2)
 Next

 CipherText = asciied

 'TAKE THE FIRST CHARACTER AND DIVIDE THIS BY 2. THIS IS THE NumOfLoops
 'GENERATED AT ENCRYPTION
 NumOfLoops = Mid(CipherText, 1, 1)
 NumOfLoops = NumOfLoops / 2
 CipherText = CipherText.Substring(1, Len(CipherText) - 1)

 For times = 1 To NumOfLoops
 'REPEAT THE DECRYPTION
 reversed = ""
 evenlySplit = ""

Mechanics Simulator 2014

Matthew Arnold 88 Candidate Number - 7061

 oddlySplit = ""
 finalFused = ""
 reversed2 = ""
 asciied = ""

 reversed = StrReverse(CipherText)

 For i = 1 To Int(Len(reversed) / 2)
 evenlySplit &= Mid(reversed, i, 1)
 Next
 For i = Int(Len(reversed) / 2) + 1 To Len(reversed)
 oddlySplit &= Mid(reversed, i, 1)
 Next

 For i = 1 To Len(evenlySplit) + Len(oddlySplit)
 finalFused &= Mid(oddlySplit, i, 1) & Mid(evenlySplit, i, 1)
 Next

 reversed2 = StrReverse(finalFused)

 For i = 1 To Len(reversed2)
 asciied &= Chr(Asc(Mid(reversed2, i, 1)) - 2)
 Next

 CipherText = asciied

 Next

 Return asciied
 Catch ex As Exception
 MessageBox("File Reading Error: Error with decryption.")
 Return ""
 End Try

 End Function

Timers
Another algorithm which I identified in the design section was one for timers within the program. I

needed to create my own timers, for holding code that needs to be repeated for an unknown

number of times and shouldn’t be repeated as quickly as possible. An example of where a timer is

used is the code for updating each of the simulations. If I simply put this code into the simulation

screen’s Update procedure, the code would repeat at the fastest possible rate, which is not helpful

for viewing the simulation.

Below is the algorithm created during the design process for a Timer:

1. When the screen is instantiated, save the current time into a variable, TimerTime

2. In the screen’s Update procedure, where the timer is needed:

3. If (CurrentTime - TimerTime) is greater than the intended timer interval:

4. TimerTime CurrentTime

5. Code to be carried out each tick of the timer

Mechanics Simulator 2014

Matthew Arnold 89 Candidate Number - 7061

The code below shows the Update procedure of the Resolving Forces Simulation:

 Public Overrides Sub Update()
 Dim NewM1X, NewM2Y As Single

 If Enabled = True Then
 If (Now - TTimer).TotalMilliseconds > 25 Then
 TTimer = Now

 'Every 25 milliseconds (ish)

 'Gradually increase the time variable
 'Calculate the expected position as if no collision happens, then
 'see if there should be a collision
 For i = 1 To 10000
 NewM1X = xDist - 0.5 * Acceleration * T ^ 2
 NewM2Y = 0.5 * Acceleration * T ^ 2
 Velocity = Acceleration * T

 If Velocity > 0 Then
 If NewM2Y >= yDist Then
 'm2 reaches floor, so stop
 Velocity = 0
 Acceleration = 0
 m2Y = yDist
 m1X = xDist * 0.2
 Finished = True
 Else
 'no collision, so continue as usual
 m1X = NewM1X
 m2Y = NewM2Y
 End If
 End If

 Tmicros += 1
 T = Tmicros / 1000000
 Next
 End If
 End If
 End Sub

The code below shows the part of this procedure which is purely the ‘timer’ part:

 If (Now - TTimer).TotalMilliseconds > 25 Then
 TTimer = Now
 'Every 25 milliseconds (ish)
 End If

TTimer is a date variable which is essential for this timer to work. The Now function returns the

current time as a date variable. The time difference between the saved time in TTimer and the

current time is evaluated. If the total number of milliseconds between the two dates is greater than

a specified amount (in this case, 25ms) the timer performs a tick. The code to be run every ‘tick’ goes

inside the If statement. When a tick is performed, the TTimer variable is reset to the current time.

This restarts the process, and another tick would be performed at least 25ms later.

Mechanics Simulator 2014

Matthew Arnold 90 Candidate Number - 7061

Projectile Motion Simulation
I also created an algorithm in the design section for the main process of the Projectile Motion

Simulation. This algorithm is repeated below and is for updating the position of the ball over time,

taking into account collisions.

1. Every 25 milliseconds (using a timer, defined on page 20):

2. Calculate, in metres and using the equations below, the expected position of the ball as if no

collision were to happen

a. px = px0 + uxt

b. py = py0 + uyt - 0.5 * 9.8t2

3. Check horizontal collisions and in the case of a collision, update velocities and positions

appropriately. If no collision is found, update the ball’s X coordinate with the expected X

coordinate

a. Check if the ball would have collided with the left edge of the screen

b. Check if the ball would have collided with the wall

c. Check if the ball would have collided with the right edge of the screen, past the wall

4. Check vertical collisions and in the case of a collision, update velocities and positions

appropriately. If no collision is found, update the ball’s Y coordinate with the expected Y

coordinate

a. Check if the ball reaches the top edge of the screen. In this case, the displayed ball

would not move up any further, but the theoretical one would

b. Check if the ball collides with the ground

5. Increase the elapsed time of the Simulation by 1 microsecond (1x10-6 seconds)

6. Repeat steps 2 to 5 10,000 times

The code below shows the Update procedure of the Projectile Motion Simulation:

 Public Overrides Sub Update()
 If Enabled = True Then
 If (Now - TTimer).TotalMilliseconds > 25 Then
 TTimer = Now

 Dim NewBallX, NewBallY As Double

 'Every 25 milliseconds (ish)

 'Gradually increase the time variable
 'Calculate the expected position as if no collision happens, then
 'see if there should be a collision
 For i = 1 To 10000
 NewBallX = InitialBallS.X + Pixels(FiringV.X * T)
 NewBallY = InitialBallS.Y + Pixels(FiringV.Y * T + 0.5 * g * T ^
2)

 'Update ball's velocity

 BallV.Y = FiringV.Y + g * T

 If Abs(BallV.X) > 0 Then

Mechanics Simulator 2014

Matthew Arnold 91 Candidate Number - 7061

 If NewBallX < 0 Or (BallS.X <= WallX And NewBallX >= WallX And
(GroundY - NewBallY <= WallY1 Or GroundY - NewBallY >= WallY2)) Or NewBallX >
Size.Width - BallRadius Then
 If NewBallX < 0 Then
 'Ball reaches left edge
 BallS.X = 0
 BallV.X = 0
 ElseIf NewBallX >= Size.Width - BallRadius Then
 'Ball has gone through wall and reaches right edge
 BallS.X = Size.Width - BallRadius
 BallV.X = 0
 ElseIf NewBallX > WallX Then
 'Ball hits wall
 BallS.X = WallX
 BallV.X = 0
 End If
 Else
 'No special cases, free space ahead
 BallS.X = NewBallX
 End If
 End If

 If Abs(BallV.Y) > 0 Then
 If NewBallY < 0 Or NewBallY > GroundY - 2 * BallRadius Then
 If NewBallY > GroundY - 2 * BallRadius Then
 'Ball reaches top edge
 BallOutOfTop = True
 AmountOutOfTop = Round(Metres(NewBallY - (GroundY - 2
* BallRadius)), 2)
 BallS.Y = GroundY - 2 * BallRadius
 BallV.Y = 0
 ElseIf NewBallY < 0 Then
 'Ball Reaches ground
 BallS.Y = 0
 BallV.Y = 0
 BallV.X = 0
 Finished = True
 End If
 Else
 'No special cases, free space ahead
 BallS.Y = NewBallY
 BallOutOfTop = False
 End If
 End If

 'Increase time by 1ms
 Tmicros += 1
 T = Tmicros / 1000000
 Next
 End If
 '0.01s of simulation has passed
 End If
 End Sub

The outer IF statement is to check if the Simulation is enabled. If the user has paused the Simulation,

this would be set to false. The IF inside that can be recognised as the 25 millisecond timer. The

equations for calculating the new position of the ball can be found just inside the FOR loop. The rest

of the code inside this loop checks for collisions with the ball’s environment, before finally

incrementing the time (T) variable by 1 millionth of a second.

Mechanics Simulator 2014

Matthew Arnold 92 Candidate Number - 7061

The diagram below illustrates simply how the program checks for a collision with the wall. The

current ball is solid black, and the theoretical new ball is white with a dashed black border. The wall

is shown by the vertical grey bar. In this situation, the program needs to work out that the ball has

collided with the wall. The program can’t just check to see if the new ball X coordinate is more than

the wall’s X coordinate, because the ball could have started beyond the wall in the first place.

Therefore, the program also checks that the current ball X coordinate is less than the wall’s. This

would mean that, in one microsecond the ball starts to the left of the wall, and wants to finish to the

right of it.

The second diagram (pictured below) builds on the collision system by adding in the factor of the

gap in the wall. This means that both horizontal and vertical positions need to be evaluated. The

same idea for the X coordinates is still the same, but this time, the program checks that the new ball

Y coordinate is between the two Y coordinates for the gap in the wall before letting the ball through

the gap. If the new ball’s Y coordinate is above Wall Y2, or below Wall Y1, then the ball should collide

with the wall and not get through.

Mechanics Simulator 2014

Matthew Arnold 93 Candidate Number - 7061

The FOR loop repeats 10,000 times. This means that the simulation time increases by 0.000001

seconds, 10,000 times (or 0.01 seconds) every tick of the timer (about 25 milliseconds of real time).

The reason for calculating the ball’s position at such small time intervals is to increase the precision

of the Simulation. By trying out different numbers of loops and different time increments, I think

that the values I have decided on maximise precision of the calculated values (more than enough for

giving values to 2 decimal places, which is what is needed), whilst not slowing the program down

noticeably due to too many calculations for the machine.

Code
The following section contains all of the code for my program, split into the various modules of

classes and forms. There is a description of each of these before the code associated with it.

Forms

Although my program is a Windows Forms Application, is consists of only one form. Since the

modular structure of my program is only classes, and my graphics system is drawing to an image at

run-time, I have had no need to design separate forms for each screen. The Main form consists of a

PictureBox object called Display, onto which the display of the program is drawn to each cycle, and a

timer object called MainTimer, which has a minimal interval and acts as the main clock of the

program. There is also a ColorDialog object, which is used for changing the main border colour in the

Settings Screen.

Mechanics Simulator 2014

Matthew Arnold 94 Candidate Number - 7061

Above is what my Main form looks like in design view. It looks quite boring because most of the

space is taken up by the main PictureBox, Display. What looks like the black border around Display is

actually the form background itself.

Below is the code for the Main form:

Imports System.IO

Public Class Main
 Public BMP As New Bitmap(960, 720)
 Public GFX As Graphics = Graphics.FromImage(BMP)

 Public Rand As New Random

 Public ScreenManager As New ScreenManager
 Public KeysDown As New List(Of Integer)
 Public KeysUp As New List(Of Integer)
 Public MouseButtonsDown As New List(Of MouseButtonInfo)
 Public MouseButtonsUp As New List(Of MouseButtonInfo)

 Public ProgramPause As Boolean = False
 Public DebugToggling As Boolean = False

 Private DragFormPos As Point

 Public CurrentUser As String = ""

 Public Structure MouseButtonInfo
 Dim Button As System.Windows.Forms.MouseButtons
 Dim Location As Point
 End Structure

 'FONTS
 Public Shared Georgia_32 As New Font("Georgia", 32)
 Public Shared Georgia_20 As New Font("Georgia", 20)
 Public Shared Georgia_20_Bold As New Font("Georgia", 20, FontStyle.Bold)
 Public Shared Arial_8 As New Font("Arial", 8)

Main Form

Display:

PictureBox

ColourSelect:

ColorDialog

MainTimer:

Timer

Mechanics Simulator 2014

Matthew Arnold 95 Candidate Number - 7061

 Public Shared Arial_10 As New Font("Arial", 10)
 Public Shared Arial_12_Bold As New Font("Arial", 12, FontStyle.Bold)
 Public Shared Arial_15 As New Font("Arial", 15)
 Public Shared Arial_15_Bold As New Font("Arial", 15, FontStyle.Bold)
 Public Shared Arial_20 As New Font("Arial", 20)
 Public Shared Arial_20_Bold As New Font("Arial", 20, FontStyle.Bold)
 Public Shared Arial_30_Bold As New Font("Arial", 30, FontStyle.Bold)
 Public Shared Arial_50_Bold As New Font("Arial", 50, FontStyle.Bold)
 Public Shared Impact_18 As New Font("Impact", 18)
 Public Shared Impact_32 As New Font("Impact", 32)

 Public Sub SelectColour(ByRef Button As TextButton)
 'Opens a colour selector and changes the colours of a button
 ProgramPause = True
 ColourSelect.ShowDialog()
 ProgramPause = False
 Button.DefaultBackColour = ColourSelect.Color
 Button.HoverBackColour = ColourSelect.Color
 Button.MouseDownBackColour = ColourSelect.Color
 Button.MouseDownBorderColour = ColourSelect.Color
 Button.HoverBorderColour = ColourSelect.Color
 End Sub

 Public Function AutoFitText(ByVal X As Integer, ByVal Y As Integer, ByVal MaxWidth
As Integer, ByVal Font As Font, ByVal Text As String, Optional ByVal Display As
Boolean = True)
 Dim Words As New List(Of String)
 Dim Lines As New List(Of String)
 Dim Current As String = ""
 Dim LineHeight As Integer = GFX.MeasureString("W", Font).Height

 'Split into words
 For i = 0 To Text.Length - 1
 If Text(i) = " " Then
 Words.Add(Current)
 Current = ""
 ElseIf i = Text.Length - 1 Then
 Current &= Text(i)
 Words.Add(Current)
 Current = ""
 Else
 Current &= Text(i)
 End If
 Next

 Current = ""
 'Split into lines
 For Each Word In Words
 If GFX.MeasureString(Current & Word, Font).Width <= MaxWidth Then
 Current &= Word & " "
 Else
 Lines.Add(Current)
 Current = Word & " "
 End If
 Next
 Lines.Add(Current)

 If Display = True Then
 'Draw Lines
 For i = 0 To Lines.Count - 1
 GFX.DrawString(Lines(i), Font, Brushes.Black, X, Y + i * LineHeight)

Mechanics Simulator 2014

Matthew Arnold 96 Candidate Number - 7061

 Next
 End If

 Return Y + LineHeight * (Lines.Count + 0.5)
 End Function

 Public Sub MessageBox(ByVal Text As String)
 ProgramPause = True
 MsgBox(Text)
 ProgramPause = False
 End Sub

 Public Function EncryptString(ByVal PlainText As String) As String
 Dim asciied, reversed, split, reversed2 As String
 Dim NumOfLoops As Integer = Rand.Next(1, 4 + 1)

 If PlainText = "" Then
 Return ""
 End If

 Try
 For times = 1 To NumOfLoops

 asciied = ""
 reversed = ""
 split = ""
 reversed2 = ""

 'MOVE ALL CHARACTERS 2 ASCII CODES UP
 For i = 1 To Len(PlainText)
 asciied = asciied & Chr(Asc(Mid(PlainText, i, 1)) + 2)
 Next

 'REVERSE THE ORDER OF THE CHARACTERS IN THE STRING
 reversed = StrReverse(asciied)

 'SPLIT THE STRING SO IT AS ALL OF THE EVENLY INDEXED CHARACTERS....
 For i = 2 To Len(reversed) Step 2
 split = split & Mid(reversed, i, 1)
 Next

 '....FOLLOWED BY THE ODDLY INDEXED CHARACTERS
 For i = 1 To Len(reversed) Step 2
 split = split & Mid(reversed, i, 1)
 Next

 'REVERSE THE STRING AGAIN
 reversed2 = StrReverse(split)

 PlainText = reversed2
 Next

 'PUT 2 * NumOfLoops ONTO THE BEGINNING OF THE STRING
 PlainText = 2 * NumOfLoops & reversed2

 'REPEAT ONE ITERATION OF THE ENCRYPTION
 asciied = ""
 reversed = ""
 split = ""
 reversed2 = ""

Mechanics Simulator 2014

Matthew Arnold 97 Candidate Number - 7061

 For i = 1 To Len(PlainText)
 asciied = asciied & Chr(Asc(Mid(PlainText, i, 1)) + 2)
 Next

 reversed = StrReverse(asciied)

 For i = 2 To Len(reversed) Step 2
 split = split & Mid(reversed, i, 1)
 Next

 For i = 1 To Len(reversed) Step 2
 split = split & Mid(reversed, i, 1)
 Next

 reversed2 = StrReverse(split)

 Return reversed2
 Catch ex As Exception
 MessageBox("File Writing Error: Error with encryption.")
 Return ""
 End Try
 End Function
 Public Function DecryptString(ByVal CipherText As String) As String
 Dim reversed, evenlySplit, oddlySplit, finalFused, reversed2, asciied As
String
 Dim NumOfLoops As Integer

 If CipherText = "" Then
 Return ""
 End If

 Try
 reversed = ""
 evenlySplit = ""
 oddlySplit = ""
 finalFused = ""
 reversed2 = ""
 asciied = ""

 'REVERSE THE STRING
 reversed = StrReverse(CipherText)

 'SPLIT THE STRING INTO TWO HALVES
 For i = 1 To Int(Len(reversed) / 2)
 evenlySplit &= Mid(reversed, i, 1)
 Next
 For i = Int(Len(reversed) / 2) + 1 To Len(reversed)
 oddlySplit &= Mid(reversed, i, 1)
 Next

 'RECONSTRUCT THE STRING, BY TAKING A CHARACTER FROM THE SECOND HALF,
 'THEN THE FIRST HALF, THEN THE SECOND HALF ETC.
 For i = 1 To Len(evenlySplit) + Len(oddlySplit)
 finalFused &= Mid(oddlySplit, i, 1) & Mid(evenlySplit, i, 1)
 Next

 'REVERSE THE STRING AGAIN
 reversed2 = StrReverse(finalFused)

 'MOVE ALL CHARACTERS 2 ASCII CODES DOWN
 For i = 1 To Len(reversed2)

Mechanics Simulator 2014

Matthew Arnold 98 Candidate Number - 7061

 asciied &= Chr(Asc(Mid(reversed2, i, 1)) - 2)
 Next

 CipherText = asciied

 'TAKE THE FIRST CHARACTER AND DIVIDE THIS BY 2. THIS IS THE NumOfLoops
 'GENERATED AT ENCRYPTION
 NumOfLoops = Mid(CipherText, 1, 1)
 NumOfLoops = NumOfLoops / 2
 CipherText = CipherText.Substring(1, Len(CipherText) - 1)

 For times = 1 To NumOfLoops
 'REPEAT THE DECRYPTION
 reversed = ""
 evenlySplit = ""
 oddlySplit = ""
 finalFused = ""
 reversed2 = ""
 asciied = ""

 reversed = StrReverse(CipherText)

 For i = 1 To Int(Len(reversed) / 2)
 evenlySplit &= Mid(reversed, i, 1)
 Next
 For i = Int(Len(reversed) / 2) + 1 To Len(reversed)
 oddlySplit &= Mid(reversed, i, 1)
 Next

 For i = 1 To Len(evenlySplit) + Len(oddlySplit)
 finalFused &= Mid(oddlySplit, i, 1) & Mid(evenlySplit, i, 1)
 Next

 reversed2 = StrReverse(finalFused)

 For i = 1 To Len(reversed2)
 asciied &= Chr(Asc(Mid(reversed2, i, 1)) - 2)
 Next

 CipherText = asciied

 Next

 Return asciied
 Catch ex As Exception
 MessageBox("File Reading Error: Error with decryption.")
 Return ""
 End Try
 End Function

 Public Function Deg(ByVal Rad As Single) As Single
 Deg = Rad
 Deg *= 180
 Deg /= Math.PI
 End Function
 Public Function Rad(ByVal Deg As Single) As Single
 Rad = Deg
 Rad *= Math.PI
 Rad /= 180
 End Function

Mechanics Simulator 2014

Matthew Arnold 99 Candidate Number - 7061

 Private Sub Main_MouseDown(sender As Object, e As
System.Windows.Forms.MouseEventArgs) Handles Display.MouseDown
 Dim MBD As New MouseButtonInfo
 MBD.Button = e.Button
 MBD.Location = New Point(e.Location.X, e.Location.Y)

 MouseButtonsDown.Add(MBD)
 End Sub
 Private Sub Main_MouseUp(sender As Object, e As
System.Windows.Forms.MouseEventArgs) Handles Display.MouseUp
 Dim MBD As New MouseButtonInfo
 MBD.Button = e.Button
 MBD.Location = New Point(e.Location.X, e.Location.Y)

 MouseButtonsUp.Add(MBD)
 End Sub

 Private Sub Main_KeyDown(sender As Object, e As System.Windows.Forms.KeyEventArgs)
Handles Me.KeyDown
 KeysDown.Add(e.KeyValue)
 End Sub
 Private Sub Main_KeyUp(sender As Object, e As System.Windows.Forms.KeyEventArgs)
Handles Me.KeyUp
 KeysUp.Add(e.KeyValue)

 ScreenManager.SetDebugOutputMessage(e.KeyValue)
 End Sub

 Private Sub Main_Load(sender As System.Object, e As System.EventArgs) Handles
MyBase.Load
 If Not Directory.Exists(My.Computer.FileSystem.SpecialDirectories.MyDocuments
& "\Mechanics Simulation\Users") Then

Directory.CreateDirectory(My.Computer.FileSystem.SpecialDirectories.MyDocuments &
"\Mechanics Simulation\Users")
 End If
 Environment.CurrentDirectory =
My.Computer.FileSystem.SpecialDirectories.MyDocuments & "\Mechanics Simulation\Users"

 DragFormPos = Nothing

 'STARTING SCREENS
 ScreenManager.AddScreen(New Title)
 ScreenManager.AddScreen(New SimulationButton)
 ScreenManager.AddScreen(New TestButton)
 ScreenManager.AddScreen(New MyProgressButton)
 End Sub

 Private Sub MainTimer_Tick(sender As System.Object, e As System.EventArgs) Handles
MainTimer.Tick
 If ProgramPause = False Then
 'UPDATE SCREENS
 ScreenManager.Update()

 'DRAW
 GFX.Clear(Color.White)

 ScreenManager.Draw()

 Display.Image = BMP

Mechanics Simulator 2014

Matthew Arnold 100 Candidate Number - 7061

 End If
 End Sub

 Private Sub Form_MouseDown(sender As Object, e As
System.Windows.Forms.MouseEventArgs) Handles Me.MouseDown
 Focus()
 DragFormPos = New Point(e.X, e.Y)
 End Sub
 Private Sub Form_MouseMove(sender As Object, e As
System.Windows.Forms.MouseEventArgs) Handles Me.MouseMove
 If Not DragFormPos = Nothing Then
 SetDesktopLocation(Windows.Forms.Form.MousePosition.X - DragFormPos.X,
Windows.Forms.Form.MousePosition.Y - DragFormPos.Y)
 End If
 End Sub
 Private Sub Form_MouseUp(sender As Object, e As
System.Windows.Forms.MouseEventArgs) Handles Me.MouseUp
 DragFormPos = Nothing
 End Sub
End Class

Each procedure, function and variable in the Main form is listed below, along with a brief description

of each one.

Main Form Variables

Name Type Description

BMP Bitmap The image to which all drawing is done to

GFX Graphics The object which handles the drawing to BMP,
which has many drawing methods, such as
DrawLine or DrawString

Display PictureBox The only visible control on the main form.
Display’s image is set to BMP every tick of
MainTimer

MainTimer Timer The timer with a minimum time interval which
makes the Screen Manager update and draw
all enabled screens

Rand Random Used for generating random integers

ScreenManager ScreenManager Object which manages all screens in the
program

KeysDown List(Of Integer) Saves the ASCII values for all keys which are
pressed. The Form’s KeyDown event will add
the pressed key to this list. This list is cleared at
the end of every MainTimer tick

KeysUp List(Of Integer) Saves the ASCII values for all keys which are
released. The Form’s KeyDown event will add
the released key to this list. This list is cleared
at the end of every MainTimer tick

MouseButtonsDown List(Of MouseButtonInfo) Saves the location and button value whenever
a mouse button is pressed. This list is cleared
at the end of every MainTimer tick

MouseButtonsUp List(Of MouseButtonInfo) Saves the location and button value whenever
a mouse button is released. This list is cleared
at the end of every MainTimer tick

Mechanics Simulator 2014

Matthew Arnold 101 Candidate Number - 7061

ProgramPause Boolean Used to indicate whether the whole program
needs to be paused. If this holds true, the
Screen Manager won’t be used every tick of
MainTimer

DebugToggling Boolean Whether or not the Debug screen can be
toggle on or off

DragFormPos Point Used in the process of dragging the Main
Window Around (See page 81)

CurrentUser String Saves the User Name of the currently logged in
User

Fonts* Font *I have defined 14 different fonts for my
program, and these can be seen in the code for
the Main form above. The fonts may differ in
size, style (i.e. Regular, or Bold) and Font Name
(e.g. Georgia, Arial, Impact)

Main Form Procedures and Functions

Name Returning Variables Description

SelectColour None Opens a colour selector and changes the
colours of a button

AutoFitText Y-value of the bottom of
the drawn block

Splits a string of text into lines so that it can be
fit into a given width

MessageBox None Pauses the program, then calls the standard
MsgBox procedure

EncryptString Encrypted String Encrypts a string

DecryptString Decrypted String Decrypts a string

Deg Angle in Degrees Converts radians into degrees

Rad Angle in Radians Converts degrees into radians

Main_MouseDown None Event which triggers when a mouse button is
pressed down

Main_MouseUp None Event which triggers when a mouse button is
released

Main_KeyDown None Event which triggers when a key is pressed
down

Main_KeyUp None Event which triggers when a key is released

Main_Load None Event which triggers when the program starts
running. This instantiates the Screen Manager

MainTimer_Tick None Event which triggers each main cycle of the
program

Form_MouseDown None Event which triggers when a mouse button is
held down on the border of the form

Form_MouseMove None Event which triggers when the mouse moves

Form_MouseUp None Event which triggers when a mouse button is
released on the border of the form

Mechanics Simulator 2014

Matthew Arnold 102 Candidate Number - 7061

Classes

In the design section, I have explained how classes were to be used as the main form of modular

structure in my program, including the main attributes and methods for each one and how they

relate to each other by inheritance, and almost all of the code in my project comprises of classes

which I have created. I have implemented all the classes that I designed mostly how I planned, so

there is no need to provide a method/attribute list for the classes. See page 23 onwards in the

design section for the lists of methods and attributes for my classes.

The classes in my program either have the purpose of a Screen, or a Tool (with the exception of the

ScreenManager). Screens include all of the separate views of the program, and Tools include

components of screens, such as buttons, Text Boxes and Menus.

ScreenManager

This class is probably the most important for the program to work. Simply, it handles all of the

currently enabled screens and allowing the right ones to Update, Handle Input and Draw to the

User’s screen. All purposes of this class are explained in detail in the Design section (on page 34) and

in the System Maintenance section (on page 81 onwards). At the top of the Screen Manager code

file is the ScreenState enumeration which is used by all screens.

Public Enum ScreenState
 Active 'Draws and accepts input
 Hidden 'Doesn't draw but accepts input
 NoInput 'Draws but doesn't accept input
 Sleep 'Doesn't draw and doesn't accept input and doesnt update
 ShutDown 'Will be removed on next cycle
End Enum

Public Class ScreenManager
 Private Shared Screens As New List(Of BaseScreen)
 Private Shared NewScreens As New List(Of BaseScreen)
 Private DebugScreen As New Debug

 Public Sub New()
 DebugScreen.Output = "Output: "
 AddScreen(DebugScreen)
 End Sub

 Public Sub Update()
 DebugScreen.ActiveScreens = "Active Screens: "
 DebugScreen.HiddenScreens = "Hidden Screens: "
 DebugScreen.NoInputScreens = "No Input Screens: "
 DebugScreen.SleepScreens = "Sleep Screens: "

 ' GENERATE LIST OF DEAD SCREENS FOR REMOVAL
 Dim RemoveScreens As New List(Of BaseScreen)

 For Each FoundScreen As BaseScreen In Screens
 If FoundScreen.State = ScreenState.ShutDown Then
 RemoveScreens.Add(FoundScreen)
 Else
 'Add the names of alive screens to debug info lists
 Select Case FoundScreen.State
 Case ScreenState.Active
 DebugScreen.ActiveScreens &= FoundScreen.Name & ", "
 Case ScreenState.Hidden

Mechanics Simulator 2014

Matthew Arnold 103 Candidate Number - 7061

 DebugScreen.HiddenScreens &= FoundScreen.Name & ", "
 Case ScreenState.NoInput
 DebugScreen.NoInputScreens &= FoundScreen.Name & ", "
 Case ScreenState.Sleep
 DebugScreen.SleepScreens &= FoundScreen.Name & ", "
 End Select
 End If
 Next

 ' REMOVE DEAD SCREENS
 For Each FoundScreen As BaseScreen In RemoveScreens
 Screens.Remove(FoundScreen)
 Next

 ' ADD NEW SCREENS TO MAIN LIST FROM THE NEW SCREENS LIST
 For Each FoundScreen As BaseScreen In NewScreens
 Screens.Add(FoundScreen)
 Next
 NewScreens.Clear()

 ' RESET DEBUG SCREEN TO END (TOP) OF LIST
 Screens.Remove(DebugScreen)
 Screens.Add(DebugScreen)

 ' CALL INPUT AND UPDATE PROCEDURES FOR APPLICABLE SCREENS
 For Each FoundScreen As BaseScreen In Screens
 If FoundScreen.State <> ScreenState.Sleep Then
 If Main.Focused And (FoundScreen.State = ScreenState.Active Or
FoundScreen.State = ScreenState.Hidden) Then
 FoundScreen.HandleInput()
 End If
 FoundScreen.Update()
 End If
 Next

 ' CLEAR MOUSE AND KEYBOARD INPUT LISTS
 Main.KeysDown.Clear()
 Main.KeysUp.Clear()
 Main.MouseButtonsDown.Clear()
 Main.MouseButtonsUp.Clear()
 End Sub

 Public Sub Draw()
 ' CALL DRAW PROCEDURE FOR APPLICABLE SCREENS
 For Each FoundScreen As BaseScreen In Screens
 If FoundScreen.State = ScreenState.Active Or FoundScreen.State =
ScreenState.NoInput Then
 FoundScreen.Draw()
 End If
 Next
 End Sub

 Public Sub SetDebugOutputMessage(ByVal message As String)
 'Sets one of the fields shown by the Debug screen to a value
 DebugScreen.Output = "Output: " & message
 End Sub

 Public Shared Sub AddScreen(ByVal screen As BaseScreen)
 NewScreens.Add(screen)
 End Sub

Mechanics Simulator 2014

Matthew Arnold 104 Candidate Number - 7061

 Public Shared Sub SetScreenState(ByVal screen As String, ByVal state As
ScreenState)
 For Each FoundScreen As BaseScreen In Screens
 If FoundScreen.Name = screen Then
 FoundScreen.State = state
 Exit For
 End If
 Next
 End Sub

 Public Shared Sub UnloadScreen(ByVal screen As String)
 'SET THE DESIRED SCREEN'S STATE TO SHUTDOWN
 For Each FoundScreen As BaseScreen In Screens
 If FoundScreen.Name = screen Then
 FoundScreen.Unload()
 Exit For
 End If
 Next
 End Sub
End Class

BaseScreen

This is the Parent Class which all screens inherit and is essential so that the Screen Manager can

reference all screens by the same type.

Public Class BaseScreen
 Public Name As String = ""
 Public State As ScreenState = ScreenState.Active
 Public Location As Point

 Public Overridable Sub HandleInput()
 'Instructions for the screen taking in and processing user input
 End Sub

 Public Overridable Sub Update()
 'Instructions for updating screen variables
 End Sub

 Public Overridable Sub Draw()
 'Instructions for drawing screen contents
 End Sub

 Public Overridable Sub Unload()
 State = ScreenState.ShutDown
 End Sub
End Class

Debug

The Debug screen is an unusual one in that it is always enabled, just hidden by default. It is purely

designed for making the development of screens easier, since it displays important information

about the currently enabled screens. Instructions for how to use it can be found on page 84.

Mechanics Simulator 2014

Matthew Arnold 105 Candidate Number - 7061

Public Class Debug
 Inherits BaseScreen

 Public ActiveScreens As String = ""
 Public HiddenScreens As String = ""
 Public NoInputScreens As String = ""
 Public SleepScreens As String = ""
 Public Output As String = ""
 Public MouseLocation As New Point(0, 0)

 Private fpsCounter As Integer
 Private fpsTimer As Date
 Private fpsText As String = ""

 Private BGRect As Rectangle

 Public Sub New()
 'This screen is hidden by default
 Name = "Debug"
 State = ScreenState.Hidden
 End Sub

 Public Overrides Sub HandleInput()
 'The F1 key toggles the visibility of the screen
 If Main.KeysDown.Contains(112) And Main.DebugToggling Then
 If State = ScreenState.Active Then
 State = ScreenState.Hidden
 ElseIf State = ScreenState.Hidden Then
 State = ScreenState.Active
 End If
 ElseIf Main.DebugToggling = False Then
 State = ScreenState.Hidden
 End If
 End Sub

 Public Overrides Sub Update()
 'Remove the final comma at the end of all applicable data strings
 If ActiveScreens.Length > 16 Then
 ActiveScreens = ActiveScreens.Substring(0, ActiveScreens.Length - 2)
 End If
 If HiddenScreens.Length > 16 Then
 HiddenScreens = HiddenScreens.Substring(0, HiddenScreens.Length - 2)
 End If
 If NoInputScreens.Length > 18 Then
 NoInputScreens = NoInputScreens.Substring(0, NoInputScreens.Length - 2)
 End If
 If SleepScreens.Length > 15 Then

Mechanics Simulator 2014

Matthew Arnold 106 Candidate Number - 7061

 SleepScreens = SleepScreens.Substring(0, SleepScreens.Length - 2)
 End If
 If SleepScreens.Length > 15 Then
 SleepScreens = SleepScreens.Substring(0, SleepScreens.Length - 2)
 End If

 'Update the size of the screen's background using the data
 Dim txtWidth As Integer = 0
 Dim txtHeight As Integer = 0

 If Main.GFX.MeasureString(ActiveScreens, Main.Arial_8).Width > txtWidth Then
 txtWidth = Main.GFX.MeasureString(ActiveScreens, Main.Arial_8).Width
 End If
 If Main.GFX.MeasureString(HiddenScreens, Main.Arial_8).Width > txtWidth Then
 txtWidth = Main.GFX.MeasureString(HiddenScreens, Main.Arial_8).Width
 End If
 If Main.GFX.MeasureString(NoInputScreens, Main.Arial_8).Width > txtWidth Then
 txtWidth = Main.GFX.MeasureString(NoInputScreens, Main.Arial_8).Width
 End If
 If Main.GFX.MeasureString(SleepScreens, Main.Arial_8).Width > txtWidth Then
 txtWidth = Main.GFX.MeasureString(SleepScreens, Main.Arial_8).Width
 End If
 If Main.GFX.MeasureString(Output, Main.Arial_8).Width > txtWidth Then
 txtWidth = Main.GFX.MeasureString(Output, Main.Arial_8).Width
 End If
 If Main.GFX.MeasureString("Mouse Position: X:0000, Y:0000",
Main.Arial_8).Width > txtWidth Then
 txtWidth = Main.GFX.MeasureString("Mouse Position: X:0000, Y:0000",
Main.Arial_8).Width
 End If
 txtHeight = Main.GFX.MeasureString(ActiveScreens, Main.Arial_8).Height * 7
 BGRect = New Rectangle(0, 0, txtWidth + 20, txtHeight + 20)

 'Timer for updating the FPS counter
 If (Now - fpsTimer).TotalMilliseconds > 1000 Then
 fpsTimer = Now
 fpsText = "FPS: " & fpsCounter
 fpsCounter = 1
 Else
 fpsCounter += 1
 End If
 End Sub

 Public Overrides Sub Draw()
 MouseLocation = New Point(Windows.Forms.Form.MousePosition.X - Main.Left - 15,
Windows.Forms.Form.MousePosition.Y - Main.Top - 15)

 Main.GFX.FillRectangle(New SolidBrush(Color.FromArgb(35 / 100 * 255, 0, 0,
0)), BGRect)
 Main.GFX.DrawString(fpsText, Main.Arial_8, Brushes.White, New Point(10, 10))
 Main.GFX.DrawString(ActiveScreens, Main.Arial_8, Brushes.White, New Point(10,
22))
 Main.GFX.DrawString(HiddenScreens, Main.Arial_8, Brushes.White, New Point(10,
34))
 Main.GFX.DrawString(NoInputScreens, Main.Arial_8, Brushes.White, New Point(10,
46))
 Main.GFX.DrawString(SleepScreens, Main.Arial_8, Brushes.White, New Point(10,
58))
 Main.GFX.DrawString("Mouse Position: X:" & MouseLocation.X & ", Y:" &
MouseLocation.Y, Main.Arial_8, Brushes.White, New Point(10, 70))
 Main.GFX.DrawString(Output, Main.Arial_8, Brushes.White, New Point(10, 82))

Mechanics Simulator 2014

Matthew Arnold 107 Candidate Number - 7061

 End Sub
End Class

Settings

This screen holds the program settings and can be accessed from almost all screens. It saves copies

of the previous screens, so that it knows which screens to load again when the Back button is

pressed.

Public Class Settings
 Inherits BaseScreen

 Private PreviousScreens As New List(Of BaseScreen)

 Private BackButton As New TextButton("BACK", Main.Arial_20_Bold,
ProgramSection.Other, New Point(840, 20), -1, -1, 3, 1)
 Private BorderColourSelector, EnableDebugToggling As TextButton

 Public Sub New(ByVal InputPreviousScreen() As BaseScreen)
 Dim TempY As Integer = 150

 Name = "Settings"
 Location = New Point(0, 0)
 State = ScreenState.Active

 'Save the previous screens, so the back button knows where to point to
 'Previous screens is an array because there may have been more than one
 'enabled screen before going to the settings menu (e.g on the Title Screen)
 For Each Screen In InputPreviousScreen
 PreviousScreens.Add(Screen)
 Next

 'Set up buttons
 BorderColourSelector = New TextButton("", Main.Arial_10, Main.BackColor,
Main.BackColor, Color.White, Main.BackColor, Main.BackColor, Main.BackColor,
Main.BackColor, Main.BackColor, Main.BackColor, New
Point(Main.GFX.MeasureString("Program Border Colour: ", Main.Arial_20).Width + 25,
TempY + 8), 20, 20, 1)
 TempY += Main.GFX.MeasureString("Program Border Colour: ",
Main.Arial_20).Height + 10
 EnableDebugToggling = New TextButton("OFF", Main.Arial_12_Bold,
ProgramSection.Other, New Point(Main.GFX.MeasureString("Enable Debug Toggling: ",
Main.Arial_20).Width + 25, TempY + 5), -1, -1, 2, 1)
 If Main.DebugToggling Then EnableDebugToggling.Text = "ON"

BackButton :

TextButton

BorderColourSelector :

TextButton

EnableDebugToggling :

TextButton

Mechanics Simulator 2014

Matthew Arnold 108 Candidate Number - 7061

 End Sub

 Public Overrides Sub HandleInput()
 If BackButton.Clicked = "Clicked" Then
 ScreenManager.UnloadScreen(Name)
 'Reload all previous screens which were saved
 For Each Screen In PreviousScreens
 ScreenManager.AddScreen(Screen)
 Next
 End If

 If BorderColourSelector.Clicked() = "Clicked" Then
 Main.SelectColour(BorderColourSelector)
 Main.BackColor = BorderColourSelector.DefaultBackColour
 End If
 If EnableDebugToggling.Clicked = "Clicked" Then
 If Main.DebugToggling Then
 Main.DebugToggling = False
 EnableDebugToggling.Text = "OFF"
 Else
 Main.DebugToggling = True
 EnableDebugToggling.Text = "ON"
 End If
 End If
 End Sub

 Public Overrides Sub Draw()
 Dim TempY As Integer = 150
 'Title
 Main.GFX.DrawString("Settings", Main.Arial_50_Bold, New
SolidBrush(Color.FromArgb(166, 0, 232)), 480 - Main.GFX.MeasureString("Settings",
Main.Arial_50_Bold).Width \ 2, 20)
 BackButton.Draw()

 'Border Colour
 Main.GFX.DrawString("Program Border Colour: ", Main.Arial_20, New
SolidBrush(Color.FromArgb(166, 0, 232)), 20, TempY)
 TempY += Main.GFX.MeasureString("Program Border Colour: ",
Main.Arial_20).Height + 10
 BorderColourSelector.Draw()
 'Debug Toggling
 Main.GFX.DrawString("Enable Debug Toggling: ", Main.Arial_20, New
SolidBrush(Color.FromArgb(166, 0, 232)), 20, TempY)
 TempY += Main.GFX.MeasureString("Enable Debug Toggling: ",
Main.Arial_20).Height + 10
 EnableDebugToggling.Draw()
 End Sub
End Class

Title

This screen is the top quarter of the Title Screen, and is responsible for the Settings/Exit menu as

well as the main logo.

Public Class Title

CornerMenu :

AlignLeftMenu

Mechanics Simulator 2014

Matthew Arnold 109 Candidate Number - 7061

 Inherits BaseScreen

 Private Size As New Point(960, 180)

 Private CornerMenu As New AlignLeftMenu(New Point(800, 10), Main.Arial_20_Bold,
Color.FromArgb(226, 153, 255), Color.FromArgb(166, 0, 232), True)

 Public Sub New()
 Name = "TitleScreenTitle"
 State = ScreenState.Active
 Location = New Point(0, 0)

 CornerMenu.AddOption("SETTINGS")
 CornerMenu.AddOption("EXIT")
 End Sub

 Public Overrides Sub HandleInput()
 Select Case CornerMenu.Update()
 Case "SETTINGS"
 ScreenManager.UnloadScreen("TitleScreenTitle")
 ScreenManager.UnloadScreen("SimulationButton")
 ScreenManager.UnloadScreen("TestButton")
 ScreenManager.UnloadScreen("MyProgressButton")
 ScreenManager.AddScreen(New Settings({New Title, New TestButton, New
SimulationButton, New MyProgressButton}))
 Case "EXIT"
 End
 End Select
 End Sub

 Public Overrides Sub Draw()
 'Title
 Main.GFX.DrawImage(My.Resources.logo, 307, 15)
 'Menu
 CornerMenu.Draw()
 End Sub
End Class

SimulationButton

This screen is the second quarter of the Title Screen, and is the big animated Simulation Button

which, when clicked, navigates to the Simulations Menu. The animation advances when the mouse

cursor is hovered over the button, and goes in reverse when the mouse cursor is not over it. The two

images below show the beginning and end of the animation of this button.

Imports System.Math

Public Class SimulationButton
 Inherits BaseScreen

Start of

animation

End of

animation

Mechanics Simulator 2014

Matthew Arnold 110 Candidate Number - 7061

 Private MouseHover As Boolean = False

 Private AniTimer As Date
 Private AniCount As Integer = 0

 Private Size As New Point(548, 180)

 Private LPoints(5), LTriangle(2) As Point
 Private IRect As Rectangle
 Private MassRect As Rectangle
 Private ProjectileRect As Rectangle

 Public Sub New()
 Name = "SimulationButton"
 State = ScreenState.Active
 Location = New Point(188, 180)

 'INITIALISE STARTING MOVING PART SETTINGS
 'L Shape
 LPoints(0) = New Point(445, 292)
 LPoints(1) = New Point(445, 303)
 LPoints(2) = New Point(404, 303)
 LPoints(3) = New Point(404, 245)
 LPoints(4) = New Point(416, 245)
 LPoints(5) = New Point(416, 292)

 'L Triangle
 LTriangle(0) = New Point(445, 292)
 LTriangle(1) = New Point(416, 292)
 LTriangle(2) = New Point(416, 268)

 'I Shape
 IRect = New Rectangle(556, 245, 12, 58)

 'Mass
 MassRect = New Rectangle(703, 245, 15, 20)

 'Projectile
 ProjectileRect = New Rectangle(254, 231, 15, 15)
 End Sub

 Public Overrides Sub Update()
 If (Now - AniTimer).TotalMilliseconds > 25 Then
 AniTimer = Now

 'every 25 milliseconds (ish)
 'if the mouse is on the button, advance the animation
 'else make the animation go backwards

 If MouseHover = True Then
 AniCount += 2
 Else
 AniCount -= 2
 End If

 If AniCount >= 101 Then
 AniCount = 100
 ElseIf AniCount <= -1 Then
 AniCount = 0
 Else
 'DRAW STUFF IN THE BUTTON BASED ON THE PERCENTAGE

Mechanics Simulator 2014

Matthew Arnold 111 Candidate Number - 7061

 Dim AniP As Single = AniCount / 100
 'L Triangle
 LTriangle(2).Y = 268 + 23 * AniP
 'I Shape
 IRect.Y = 245 - 35 * AniP
 'Mass
 MassRect.Y = 245 + 35 * AniP
 'Projectile
 ProjectileRect.Y = 231 - Abs(Sin(2 * PI * AniP)) * 41
 ProjectileRect.X = 254 + 266 * AniP
 End If
 End If
 End Sub

 Public Overrides Sub HandleInput()
 'CHECK IF MOUSE IS IN BUTTON
 If Windows.Forms.Form.MousePosition.X - Main.Left - 15 >= Location.X And
Windows.Forms.Form.MousePosition.X - Main.Left - 15 <= Location.X + Size.X And
Windows.Forms.Form.MousePosition.Y - Main.Top - 15 > Location.Y And
Windows.Forms.Form.MousePosition.Y - Main.Top - 15 <= Location.Y + 144 Then
 'Check for left mouse click on button
 For Each Click In Main.MouseButtonsUp
 If Click.Button = MouseButtons.Left Then
 ScreenManager.UnloadScreen("SimulationButton")
 ScreenManager.UnloadScreen("TestButton")
 ScreenManager.UnloadScreen("MyProgressButton")
 ScreenManager.UnloadScreen("TitleScreenTitle")

 ScreenManager.AddScreen(New SimulationMenu)
 End If
 Next

 MouseHover = True
 Else
 MouseHover = False
 End If
 End Sub

 Public Overrides Sub Draw()
 'DRAW BUTTON
 'StaticImage
 Main.GFX.DrawImage(My.Resources.SimulationButton, Location)
 If MouseHover = True Then
 Main.GFX.DrawImage(My.Resources.SimulationButtonHoverBorder, Location)
 End If
 'L Shape
 Main.GFX.FillPolygon(New SolidBrush(Color.FromArgb(0, 90, 194)), LPoints)
 'L Triangle
 Main.GFX.FillPolygon(Brushes.Gray, LTriangle)
 'I Shape
 Main.GFX.FillRectangle(New SolidBrush(Color.FromArgb(0, 90, 194)), IRect)
 'Mass
 Main.GFX.DrawLine(New Pen(New SolidBrush(Color.FromArgb(92, 50, 3)), 5), 709,
233, 709, MassRect.Y + 5)
 Main.GFX.FillRectangle(Brushes.Gray, MassRect)
 Main.GFX.DrawString("4", Main.Arial_8, Brushes.Black, MassRect.X + 2,
MassRect.Y + 3)
 'Projectile
 Main.GFX.FillEllipse(New SolidBrush(Color.FromArgb(0, 90, 194)),
ProjectileRect)
 End Sub

Mechanics Simulator 2014

Matthew Arnold 112 Candidate Number - 7061

End Class

TestButton

This screen is the third quarter of the Title Screen, and is the big animated Test Button which, when

clicked, navigates to the Test User Selection. The animation advances when the mouse cursor is

hovered over the button, and goes in reverse when the mouse cursor is not over it. The two images

below show the beginning and end of the animation of this button.

Imports System.Math

Public Class TestButton
 Inherits BaseScreen

 Private MouseHover As Boolean = False

 Private AniTimer As Date
 Private AniCount As Integer = 0

 Private Size As New Point(319, 180)

 Private Tick1Points(2), Tick2Points(2), Cross1Points(3) As Point
 Private Tick1Alpha, Tick2Alpha, Cross1Alpha As Integer

 Public Sub New()
 Name = "TestButton"
 State = ScreenState.Active
 Location = New Point(320, 360)

 'INITIALISE STARTING MOVING PART SETTINGS
 'Tick 1
 Tick1Points(0) = New Point(570, 400)
 Tick1Points(1) = New Point(580, 410)
 Tick1Points(2) = New Point(600, 370)
 Tick1Alpha = 0
 'Tick 2
 Tick2Points(0) = New Point(570, 430)
 Tick2Points(1) = New Point(580, 440)
 Tick2Points(2) = New Point(600, 400)
 Tick2Alpha = 0
 'Cross 1
 Cross1Points(0) = New Point(570, 450)
 Cross1Points(1) = New Point(600, 480)
 Cross1Points(2) = New Point(570, 480)
 Cross1Points(3) = New Point(600, 450)
 Cross1Alpha = 0
 End Sub

 Public Overrides Sub Update()
 If (Now - AniTimer).TotalMilliseconds > 25 Then

Start of

animation

End of

animation

Mechanics Simulator 2014

Matthew Arnold 113 Candidate Number - 7061

 AniTimer = Now
 'every 25 milliseconds (ish)
 'if the mouse is on the button, advance the animation
 'else make the animation go backwards

 If MouseHover = True Then
 AniCount += 2
 Else
 AniCount -= 2
 End If

 If AniCount >= 101 Then
 AniCount = 100
 ElseIf AniCount <= -1 Then
 AniCount = 0
 Else
 'DRAW STUFF IN THE BUTTON BASED ON THE PERCENTAGE
 Dim AniP As Single = AniCount / 100

 Tick1Alpha = 255 * AniP ^ 1
 Tick2Alpha = 255 * AniP ^ 2
 Cross1Alpha = 255 * AniP ^ 4
 End If
 End If
 End Sub

 Public Overrides Sub HandleInput()
 'CHECK IF MOUSE IS IN BUTTON
 If Windows.Forms.Form.MousePosition.X - Main.Left - 15 >= Location.X And
Windows.Forms.Form.MousePosition.X - Main.Left - 15 <= Location.X + Size.X And
Windows.Forms.Form.MousePosition.Y - Main.Top - 15 > Location.Y And
Windows.Forms.Form.MousePosition.Y - Main.Top - 15 <= Location.Y + 144 Then
 'Check for left mouse click on button
 For Each Click In Main.MouseButtonsUp
 If Click.Button = MouseButtons.Left Then
 ScreenManager.UnloadScreen("SimulationButton")
 ScreenManager.UnloadScreen("TestButton")
 ScreenManager.UnloadScreen("MyProgressButton")
 ScreenManager.UnloadScreen("TitleScreenTitle")

 'Load Test screens
 ScreenManager.AddScreen(New TestUserSelection)
 End If
 Next

 MouseHover = True
 Else
 MouseHover = False
 End If
 End Sub

 Public Overrides Sub Draw()
 'DRAW BUTTON
 'StaticImage
 Main.GFX.DrawImage(My.Resources.TestButton, Location)
 If MouseHover = True Then
 Main.GFX.DrawImage(My.Resources.TestButtonHoverBorder, Location)
 End If
 'Tick1
 Main.GFX.DrawLines(New Pen(New SolidBrush(Color.FromArgb(Tick1Alpha,
Color.ForestGreen)), 3), Tick1Points)

Mechanics Simulator 2014

Matthew Arnold 114 Candidate Number - 7061

 'Tick2
 Main.GFX.DrawLines(New Pen(New SolidBrush(Color.FromArgb(Tick2Alpha,
Color.ForestGreen)), 3), Tick2Points)
 'Cross1
 Main.GFX.DrawLine(New Pen(New SolidBrush(Color.FromArgb(Cross1Alpha,
Color.DarkRed)), 3), Cross1Points(0), Cross1Points(1))
 Main.GFX.DrawLine(New Pen(New SolidBrush(Color.FromArgb(Cross1Alpha,
Color.DarkRed)), 3), Cross1Points(2), Cross1Points(3))
 End Sub
End Class

MyProgressButton

This screen is the fourth quarter of the Title Screen, and is the big animated My Progress Button

which, when clicked, navigates to the My Progress Selection. The animation advances when the

mouse cursor is hovered over the button, and goes in reverse when the mouse cursor is not over it.

The two images below show the beginning and end of the animation of this button.

Public Class MyProgressButton
 Inherits BaseScreen

 Private MouseHover As Boolean = False

 Private AniTimer As Date
 Private AniCount As Integer = 0

 Private Size As New Point(637, 180)

 Private GraphCoverSrcRect As Rectangle
 Private GraphCoverX As Integer
 Private WellDoneAlpha, GoodJobAlpha As Integer

 Public Sub New()
 Name = "MyProgressButton"
 State = ScreenState.Active
 Location = New Point(162, 540)

 'INITIALISE STARTING MOVING PART SETTINGS
 'Graph Cover
 GraphCoverX = 480
 GraphCoverSrcRect = New Rectangle(0, 0, 291, 117)
 'Texts
 GoodJobAlpha = 0
 WellDoneAlpha = 0
 End Sub

 Public Overrides Sub Update()
 If (Now - AniTimer).TotalMilliseconds > 25 Then
 AniTimer = Now

Start of

animation

End of

animation

Mechanics Simulator 2014

Matthew Arnold 115 Candidate Number - 7061

 'every 25 milliseconds (ish)
 'if the mouse is on the button, advance the animation
 'else make the animation go backwards

 If MouseHover = True Then
 AniCount += 2
 Else
 AniCount -= 2
 End If

 If AniCount >= 101 Then
 AniCount = 100
 ElseIf AniCount <= -1 Then
 AniCount = 0
 Else
 'DRAW STUFF IN THE BUTTON BASED ON THE PERCENTAGE
 Dim AniP As Single = AniCount / 100
 'Graph Cover
 GraphCoverX = 480 + 291 * AniP
 GraphCoverSrcRect.X = 291 * AniP
 'Texts
 GoodJobAlpha = 255 * AniP
 WellDoneAlpha = 255 * AniP ^ 4
 End If
 End If
 End Sub

 Public Overrides Sub HandleInput()
 'CHECK IF MOUSE IS IN BUTTON
 If Windows.Forms.Form.MousePosition.X - Main.Left - 15 >= Location.X And
Windows.Forms.Form.MousePosition.X - Main.Left - 15 <= Location.X + Size.X And
Windows.Forms.Form.MousePosition.Y - Main.Top - 15 > Location.Y And
Windows.Forms.Form.MousePosition.Y - Main.Top - 15 <= Location.Y + 144 Then
 'Check for left mouse click on button
 For Each Click In Main.MouseButtonsUp
 If Click.Button = MouseButtons.Left Then
 ScreenManager.UnloadScreen("SimulationButton")
 ScreenManager.UnloadScreen("TestButton")
 ScreenManager.UnloadScreen("MyProgressButton")
 ScreenManager.UnloadScreen("TitleScreenTitle")

 'Load My Progress screens
 ScreenManager.AddScreen(New MyProgressUserSelection)
 End If
 Next

 MouseHover = True
 Else
 MouseHover = False
 End If
 End Sub

 Public Overrides Sub Draw()
 'DRAW BUTTON
 'StaticImage
 Main.GFX.DrawImage(My.Resources.MyProgressButton, Location)
 If MouseHover = True Then
 Main.GFX.DrawImage(My.Resources.MyProgressButtonHoverBorder, Location)
 End If
 'Well Done

Mechanics Simulator 2014

Matthew Arnold 116 Candidate Number - 7061

 Main.GFX.DrawString("WELL DONE", Main.Arial_12_Bold, New
SolidBrush(Color.FromArgb(WellDoneAlpha, 0, 128, 0)), 190, 580)
 'Good Job
 Main.GFX.DrawString("GOOD JOB", Main.Georgia_20_Bold, New
SolidBrush(Color.FromArgb(GoodJobAlpha, 0, 128, 0)), 305, 560)
 'Graph Cover
 Main.GFX.DrawImage(My.Resources.MyProgressButtonGraphCover, GraphCoverX, 553,
GraphCoverSrcRect, GraphicsUnit.Pixel)
 'Static Text
 Main.GFX.DrawImage(My.Resources.MyProgressButtonText, Location)
 End Sub
End Class

SimulationMenu

This screen presents each of the three Simulations. There is a big button, a description and an

animated preview for each one. The animated preview is just a half-size version of the simulation

which constantly repeats itself. The information about a Simulation is shown when the mouse cursor

hovers over the corresponding button. Clicking the button navigates to that Simulation.

Public Class SimulationMenu
 Inherits BaseScreen

 Private Const SimulationInfoWidth As Integer = 480
 Private Const SimulationInfoHeight As Double = 720 * 2 / 7

 Private Structure SimulationInfo
 Dim Title As String
 Dim Description As String
 Dim LaunchButton As TextButton
 Dim Location As Point
 Dim Enabled As Boolean
 End Structure

 Private Simulations(2) As SimulationInfo

 Private MainMenuButton As New TextButton(" MAIN" & vbNewLine & "MENU",
Main.Arial_20_Bold, ProgramSection.Simulation, New Point(845, 10), -1, -1, 3)
 Private SettingsButton As New TextButton("SETTINGS", Main.Arial_20_Bold,
ProgramSection.Simulation, New Point(675, 25), -1, -1, 3)

MainMenuButton : TextButton

SettingsButton : TextButton

PMSimulation :

ProjectileMotionSimulation

Simulations(0).Description : String

Simulations(0).Title : String

Simulations(0).LaunchButton :

TextButton

Mechanics Simulator 2014

Matthew Arnold 117 Candidate Number - 7061

 'Bitmap for drawing simulation previews to
 Private BMP As New Bitmap(683 \ 2, 614 \ 2)

 Private FOSSimulation As New ForcesOnSlopesSimulation(SimulationMode.Simulation)
 Private RFSimulation As New ResolvingForcesSimulation(SimulationMode.Simulation)
 Private PMSimulation As New ProjectileMotionSimulation(SimulationMode.Simulation)

 Private VisibleSimulation As String = ""

 Public Sub New()
 Name = "SimulationMenu"
 State = ScreenState.Active
 Location = New Point(0, 0)

 Simulations(0).Title = "Projectile Motion"
 Simulations(2).Title = "Resolving Forces"
 Simulations(1).Title = "Forces On Slopes"

 'For each simulation, Set up the button, location and description
 For y = 0 To 2
 Simulations(y).Location = New Point(0, (720 \ 7) + (720 * 2 \ 7) * y)
 Select Case Simulations(y).Title
 Case "Projectile Motion"
 Simulations(y).Description = "Forge the destiny of a lone cannon
ball by altering its initial speed, angle, and the dimensions of its surroundings."
 Case "Resolving Forces"
 Simulations(y).Description = "Model a mass pulling another mass
around a smooth pulley by a light, inextensible string."
 Case "Forces On Slopes"
 Simulations(y).Description = "Change the angle of the slope, the
mass of the block, and even the gravity."
 Case Else
 Simulations(y).Description = ""
 End Select
 Simulations(y).LaunchButton = New TextButton(Simulations(y).Title,
Main.Arial_30_Bold, ProgramSection.Simulation, New Point(Simulations(y).Location.X,
Simulations(y).Location.Y + 4), SimulationInfoWidth - 2, SimulationInfoHeight - 5, 3)
 If Simulations(y).Title <> "" Then
 Simulations(y).Enabled = True
 Else
 Simulations(y).Enabled = False
 End If
 Next

 PMSimulation.Enabled = True
 FOSSimulation.Enabled = True
 RFSimulation.Enabled = True
 End Sub

 Public Overrides Sub Update()
 'Find out which button is being hovered over, then set that category as the
visible preview simulation.
 VisibleSimulation = ""
 For Each Simulation In Simulations
 If Simulation.Enabled = True Then
 If Simulation.LaunchButton.MouseHover = True Then
 VisibleSimulation = Simulation.Title
 End If
 End If
 Next

Mechanics Simulator 2014

Matthew Arnold 118 Candidate Number - 7061

 'Update the visible simulation
 Select Case VisibleSimulation
 Case "Forces On Slopes"
 FOSSimulation.Update()
 If FOSSimulation.Finished = True Then
 FOSSimulation.ResetVariables()
 FOSSimulation.Finished = False
 FOSSimulation.Enabled = True
 End If
 Case "Resolving Forces"
 RFSimulation.Update()
 If RFSimulation.Finished = True Then
 RFSimulation.ResetVariables()
 RFSimulation.Finished = False
 RFSimulation.Enabled = True
 End If
 Case "Projectile Motion"
 PMSimulation.Update()
 If PMSimulation.Finished = True Then
 PMSimulation.ResetVariables()
 PMSimulation.Finished = False
 PMSimulation.Enabled = True
 End If
 End Select
 End Sub

 Public Overrides Sub HandleInput()
 'Check all buttons for clicks
 For y = 0 To 2
 If Simulations(y).LaunchButton.Clicked = "Clicked" And
Simulations(y).Enabled = True Then
 ScreenManager.UnloadScreen("SimulationMenu")
 Select Case Simulations(y).Title
 Case "Projectile Motion"
 ScreenManager.AddScreen(New ProjectileMotion)
 Case "Resolving Forces"
 ScreenManager.AddScreen(New ResolvingForces)
 Case "Forces On Slopes"
 ScreenManager.AddScreen(New ForcesOnSlopes)
 End Select
 End If
 Next

 If MainMenuButton.Clicked = "Clicked" Then
 ScreenManager.UnloadScreen(Name)
 ScreenManager.AddScreen(New Title)
 ScreenManager.AddScreen(New SimulationButton)
 ScreenManager.AddScreen(New TestButton)
 ScreenManager.AddScreen(New MyProgressButton)
 End If
 If SettingsButton.Clicked = "Clicked" Then
 ScreenManager.UnloadScreen(Name)
 ScreenManager.AddScreen(New Settings({New SimulationMenu}))
 End If
 End Sub

 Public Overrides Sub Draw()
 'MAIN TITLE BAR
 'Title

Mechanics Simulator 2014

Matthew Arnold 119 Candidate Number - 7061

 Main.GFX.DrawString("SIMULATIONS", Main.Arial_50_Bold, New
SolidBrush(Color.FromArgb(0, 90, 194)), New Point(0, 10))
 'Buttons
 MainMenuButton.Draw()
 SettingsButton.Draw()

 'DIVIDING LINES
 For y = 0 To 2
 Main.GFX.DrawLine(New Pen(New SolidBrush(Color.FromArgb(0, 90, 194)), 5),
New PointF(0, SimulationInfoHeight * (y + 0.5)), New PointF(480, SimulationInfoHeight
* (y + 0.5)))
 Next
 Main.GFX.DrawLine(New Pen(New SolidBrush(Color.FromArgb(0, 90, 194)), 5),
SimulationInfoWidth, SimulationInfoHeight \ 2 - 2, SimulationInfoWidth, 960 + 2)

 For y = 0 To 2
 'FOR EACH SIMULATION
 If Simulations(y).Enabled = True Then
 'Button
 Simulations(y).LaunchButton.Draw()
 End If
 Next

 'PREVIEW OF VISIBLE SIMULATION
 Graphics.FromImage(BMP).Clear(Color.White)
 Select Case VisibleSimulation
 Case "Forces On Slopes"
 FOSSimulation.DrawToCustomImage(BMP)
 Main.AutoFitText(550, 360 + BMP.Height \ 2 + 5, BMP.Width,
Main.Arial_15, Simulations(1).Description)
 Graphics.FromImage(BMP).DrawString(VisibleSimulation,
Main.Arial_12_Bold, New SolidBrush(Color.FromArgb(0, 90, 194)), 5, 5)
 Case "Resolving Forces"
 RFSimulation.DrawToCustomImage(BMP)
 Main.AutoFitText(550, 360 + BMP.Height \ 2 + 5, BMP.Width,
Main.Arial_15, Simulations(2).Description)
 Graphics.FromImage(BMP).DrawString(VisibleSimulation,
Main.Arial_12_Bold, New SolidBrush(Color.FromArgb(0, 90, 194)), 5, 5)
 Case "Projectile Motion"
 PMSimulation.DrawToCustomImage(BMP)
 Main.AutoFitText(550, 360 + BMP.Height \ 2 + 5, BMP.Width,
Main.Arial_15, Simulations(0).Description)
 Graphics.FromImage(BMP).DrawString(VisibleSimulation,
Main.Arial_12_Bold, New SolidBrush(Color.FromArgb(0, 90, 194)), 5, 5)
 Case Else
 Graphics.FromImage(BMP).DrawString("Hover over a Simulation for a
preview", Main.Arial_12_Bold, New SolidBrush(Color.FromArgb(0, 90, 194)), 20,
BMP.Height \ 2 - 20)
 End Select
 Graphics.FromImage(BMP).DrawRectangle(New Pen(Brushes.Black, 5), 2, 2,
BMP.Width - 5, BMP.Height - 5)
 Main.GFX.DrawImage(BMP, 550, 360 - BMP.Height \ 2)
 End Sub
End Class

ProjectileMotion

This screen is for controlling the Projectile Motion Simulation. There are variables for changing

various aspects of the Simulation. There are also buttons for the Play, Pause and Stop/Reset

Mechanics Simulator 2014

Matthew Arnold 120 Candidate Number - 7061

commands. The main feature of this screen is its instance of the ProjectileMotionSimulation, which

is responsible for the actual Simulation, as well as the animation.

Imports System.Math

Public Class ProjectileMotion
 Inherits BaseScreen

 Private MenuButton As New TextButton("MENU", Main.Arial_20_Bold,
ProgramSection.Simulation, New Point(822, 50), -1, 35, 3, 1)
 Private SettingsButton As New TextButton("SETTINGS", Main.Arial_20_Bold,
ProgramSection.Simulation, New Point(792, 10), -1, 35, 3, 1)

 Private PlayButton As New PictureButton(New Point(522, 10),
My.Resources.PlayDefault, My.Resources.PlayHover, My.Resources.PlayDown, -1, -1)
 Private PauseButton As New PictureButton(New Point(612, 10),
My.Resources.PauseDefault, My.Resources.PauseHover, My.Resources.PauseDown, -1, -1)
 Private StopButton As New PictureButton(New Point(702, 10),
My.Resources.StopDefault, My.Resources.StopHover, My.Resources.StopDown, -1, -1)

 Private Simulation As New ProjectileMotionSimulation(SimulationMode.Simulation)
 Private PositionXBox, PositionYBox, VelocityXBox, VelocityYBox, BallSpeedBox,
BallAngleBox, WallHeightBox, WallGapBox, XDistanceBox, TimeBox As NumberBox

 Public Sub New()
 Dim TempY, TempX As Integer

 Name = "ProjectileMotion"

PositionYBox : NumberBox

PositionXBox : NumberBox

VelocityYBox : NumberBox

VelocityXBox : NumberBox

BallSpeedBox : NumberBox

BallAngleBox : NumberBox

WallHeightBox : NumberBox

WallGapBox : NumberBox

XDistanceBox : NumberBox

TimeBox : NumberBox

PlayButton : PictureButton

PauseButton : PictureButton

StopButton :

PictureButton

Simulation :

ProjectileMotionSimulation

SettingsButton : TextButton

MenuButton : TextButton

Mechanics Simulator 2014

Matthew Arnold 121 Candidate Number - 7061

 State = ScreenState.Active
 Location = New Point(0, 0)

 'Create the input boxes in the correct positions for each variable
 TempY = Main.AutoFitText(0, 720 * 1 / 7, 960 * 2 / 7, Main.Arial_15, "Ball
Position", False)
 TempX = Main.GFX.MeasureString("X:", Main.Arial_15).Width + 10
 PositionXBox = New NumberBox(New Point(TempX, TempY), Main.Arial_10,
ProgramSection.Simulation, 3, 960 / 7 - TempX - 10)
 TempX = 960 / 7 + Main.GFX.MeasureString("Y:", Main.Arial_15).Width + 10
 PositionYBox = New NumberBox(New Point(TempX, TempY), Main.Arial_10,
ProgramSection.Simulation, 3, 960 * 2 / 7 - TempX - 10)
 TempY += Main.GFX.MeasureString("X:", Main.Arial_15).Height + 15

 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Ball
Velocity", False)
 TempX = Main.GFX.MeasureString("X:", Main.Arial_15).Width + 10
 VelocityXBox = New NumberBox(New Point(TempX, TempY), Main.Arial_10,
ProgramSection.Simulation, 3, 960 / 7 - TempX - 10)
 TempX = 960 / 7 + Main.GFX.MeasureString("Y:", Main.Arial_15).Width + 10
 VelocityYBox = New NumberBox(New Point(TempX, TempY), Main.Arial_10,
ProgramSection.Simulation, 3, 960 * 2 / 7 - TempX - 10)
 TempY += Main.GFX.MeasureString("X:", Main.Arial_15).Height + 15

 TempX = Main.GFX.MeasureString("Ball Speed:", Main.Arial_15).Width + 10
 BallSpeedBox = New NumberBox(New Point(TempX, TempY), Main.Arial_10,
ProgramSection.Simulation, 3, 960 * 2 / 7 - TempX - 10)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Ball Speed:",
False)

 TempX = Main.GFX.MeasureString("Angle of Motion:", Main.Arial_15).Width + 10
 BallAngleBox = New NumberBox(New Point(TempX, TempY), Main.Arial_10,
ProgramSection.Simulation, 3, 960 * 2 / 7 - TempX - 10)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Angle of
Motion:", False)

 TempX = Main.GFX.MeasureString("Wall Height:", Main.Arial_15).Width + 10
 WallHeightBox = New NumberBox(New Point(TempX, TempY), Main.Arial_10,
ProgramSection.Simulation, 3, 960 * 2 / 7 - TempX - 10)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Wall Height:",
False)

 TempX = Main.GFX.MeasureString("Wall Gap:", Main.Arial_15).Width + 10
 WallGapBox = New NumberBox(New Point(TempX, TempY), Main.Arial_10,
ProgramSection.Simulation, 3, 960 * 2 / 7 - TempX - 10)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Wall Gap:",
False)

 TempX = Main.GFX.MeasureString("Horizontal Distance:", Main.Arial_15).Width +
10
 XDistanceBox = New NumberBox(New Point(TempX, TempY), Main.Arial_10,
ProgramSection.Simulation, 3, 960 * 2 / 7 - TempX - 10)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Horizontal
Distance:", False)

 TempX = Main.GFX.MeasureString("Time:", Main.Arial_15).Width + 10
 TimeBox = New NumberBox(New Point(TempX, TempY), Main.Arial_10,
ProgramSection.Simulation, 1, 960 * 2 / 7 - TempX - 10)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Time:", False)

 GetValuesFromSim()

Mechanics Simulator 2014

Matthew Arnold 122 Candidate Number - 7061

 End Sub

 Public Overrides Sub HandleInput()
 Dim ChangeOccured As Boolean = True
 If MenuButton.Clicked = "Clicked" Then
 ScreenManager.UnloadScreen(Name)
 ScreenManager.AddScreen(New SimulationMenu)
 End If
 If SettingsButton.Clicked() = "Clicked" Then
 ScreenManager.UnloadScreen(Name)
 ScreenManager.AddScreen(New Settings({New ProjectileMotion}))
 End If

 'Check input for play, pause, stop
 If PlayButton.Clicked() = "Clicked" Then
 Simulation.TTimer = Now
 Simulation.Enabled = True
 ElseIf PauseButton.Clicked() = "Clicked" Then
 Simulation.Enabled = False
 ElseIf StopButton.Clicked() = "Clicked" Then
 Simulation.Enabled = False
 Simulation.ResetVariables()
 GetValuesFromSim()
 End If
 For Each Key In Main.KeysDown
 If Key = 32 Then
 'Space Bar
 If Simulation.Enabled = True Then
 Simulation.Enabled = False
 Else
 Simulation.TTimer = Now
 Simulation.Enabled = True
 End If
 End If
 Next

 If Simulation.Enabled = False And Simulation.T = 0 Then
 'Check for input from variable input boxes, then update the simulation
with the values.
 'Sometimes when one value changes, other dependent values must change too.
 If PositionXBox.HandleInput() = "Entered" And PositionXBox.Text <> "" Then
 Simulation.InitialBallS.X = Simulation.Pixels(CDec(PositionXBox.Text))
+ 50
 ElseIf PositionYBox.HandleInput() = "Entered" And PositionYBox.Text <> ""
Then
 Simulation.InitialBallS.Y = Simulation.Pixels(CDec(PositionYBox.Text))
 ElseIf VelocityXBox.HandleInput() = "Entered" And VelocityXBox.Text <> ""
Then
 Simulation.FiringV.X = CDec(VelocityXBox.Text)
 ElseIf VelocityYBox.HandleInput() = "Entered" And VelocityYBox.Text <> ""
Then
 Simulation.FiringV.Y = CDec(VelocityYBox.Text)
 ElseIf BallSpeedBox.HandleInput() = "Entered" And BallSpeedBox.Text <> ""
Then
 Simulation.FiringSpeed = CDec(BallSpeedBox.Text)
 ElseIf BallAngleBox.HandleInput() = "Entered" And BallAngleBox.Text <> ""
Then
 Simulation.FiringAngle = CDec(BallAngleBox.Text)
 ElseIf WallHeightBox.HandleInput() = "Entered" And WallHeightBox.Text <>
"" Then
 Simulation.WallY2 = 500 - Simulation.Pixels(CDec(WallHeightBox.Text))

Mechanics Simulator 2014

Matthew Arnold 123 Candidate Number - 7061

 Simulation.WallY1 = 500 - Simulation.Pixels(CDec(WallHeightBox.Text) +
CDec(WallGapBox.Text))
 ElseIf WallGapBox.HandleInput() = "Entered" And WallGapBox.Text <> "" Then
 Simulation.WallY2 = 500 - Simulation.Pixels(CDec(WallHeightBox.Text))
 Simulation.WallY1 = 500 - Simulation.Pixels(CDec(WallHeightBox.Text) +
CDec(WallGapBox.Text))
 ElseIf XDistanceBox.HandleInput() = "Entered" And XDistanceBox.Text <> ""
Then
 If XDistanceBox.Text <> "0" Then
 Simulation.Scale = 550 / CDec(XDistanceBox.Text)
 Else
 Main.MessageBox("Error: Horizontal Distance cannot be 0")
 End If
 Else
 ChangeOccured = False
 End If

 'Variables entered
 If ChangeOccured = True Then
 Simulation.ResetVariables()
 GetValuesFromSim()
 End If
 End If
 End Sub

 Private Sub GetValuesFromSim()
 'values from simulation into boxes
 PositionXBox.Text = Round(Simulation.Metres(Simulation.BallS.X - 50), 2)
 PositionYBox.Text = Round(Simulation.Metres(Simulation.BallS.Y), 2)
 VelocityXBox.Text = Round(Simulation.BallV.X, 2)
 VelocityYBox.Text = Round(Simulation.BallV.Y, 2)
 BallSpeedBox.Text = Round(Sqrt(Simulation.BallV.X ^ 2 + Simulation.BallV.Y ^
2), 2)
 BallAngleBox.Text = Round(Main.Deg(Atan(Simulation.BallV.Y /
Simulation.BallV.X)), 2)
 WallHeightBox.Text = Round(Simulation.Metres(500 - Simulation.WallY2), 2)
 WallGapBox.Text = Round(Simulation.Metres(500 - Simulation.WallY1) -
WallHeightBox.Text, 2)
 XDistanceBox.Text = Round(550 / Simulation.Scale, 2)
 TimeBox.Text = Round(Simulation.T, 2)
 End Sub

 Public Overrides Sub Update()
 Simulation.Update()

 If Simulation.Enabled = True Then
 GetValuesFromSim()
 End If
 End Sub

 Public Overrides Sub Draw()
 Dim TempY As Integer = 0

 'MAIN TITLE BAR
 'Title
 Main.GFX.DrawString("Projectile Motion", Main.Arial_30_Bold, New
SolidBrush(Color.FromArgb(0, 90, 194)), New Point(261 -
Main.GFX.MeasureString("Projectile Motion", Main.Arial_30_Bold).Width \ 2, 25))
 'Simulation control buttons
 PlayButton.Draw()
 PauseButton.Draw()

Mechanics Simulator 2014

Matthew Arnold 124 Candidate Number - 7061

 StopButton.Draw()
 'Other buttons
 MenuButton.Draw()
 SettingsButton.Draw()

 'DIVIDING LINES
 Main.GFX.DrawLine(New Pen(New SolidBrush(Color.FromArgb(0, 90, 194)), 5), New
Point(960 * 2 / 7, 720 * 1 / 7), New Point(960, 720 * 1 / 7))
 Main.GFX.DrawLine(New Pen(New SolidBrush(Color.FromArgb(0, 90, 194)), 5), New
Point(960 * 2 / 7, 720 * 1 / 7 - 2), New Point(960 * 2 / 7, 720))

 'VARIABLE SETTINGS
 TempY = Main.AutoFitText(0, 720 * 1 / 7, 960 * 2 / 7, Main.Arial_15, "Ball
Position")
 Main.GFX.DrawString("X:", Main.Arial_15, Brushes.Black, 0, TempY)
 PositionXBox.Draw()
 Main.GFX.DrawString("Y:", Main.Arial_15, Brushes.Black, 960 / 7, TempY)
 TempY += Main.GFX.MeasureString("Y:", Main.Arial_15).Height + 15
 PositionYBox.Draw()

 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Ball
Velocity")
 Main.GFX.DrawString("X:", Main.Arial_15, Brushes.Black, 0, TempY)
 VelocityXBox.Draw()
 Main.GFX.DrawString("Y:", Main.Arial_15, Brushes.Black, 960 / 7, TempY)
 TempY += Main.GFX.MeasureString("Y:", Main.Arial_15).Height + 15
 VelocityYBox.Draw()

 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Ball Speed:")
 BallSpeedBox.Draw()

 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Angle of
Motion:")
 BallAngleBox.Draw()

 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Wall Height:")
 WallHeightBox.Draw()

 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Wall Gap:")
 WallGapBox.Draw()

 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Horizontal
Distance:")
 XDistanceBox.Draw()

 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Time:")
 TimeBox.Draw()
 'SIMULATION
 Simulation.Draw()

 'MAIN RECT: 277, 106, 683, 614
 End Sub
End Class

ProjectileMotionSimulation

This class purely controls the actual Simulation, and only displays the animation for Projectile

Motion. The DrawToCustomImage procedure is used for the Simulation previews on the Simulations

Menu. It draws the animation with half the size.

Mechanics Simulator 2014

Matthew Arnold 125 Candidate Number - 7061

Imports System.Math

Public Enum SimulationMode
 Simulation
 Test
End Enum

Public Class ProjectileMotionSimulation
 Inherits BaseScreen

 Public Mode As SimulationMode
 Public Finished As Boolean = False
 Public Visible As Boolean = True

 Public Scale As Double = 550 / 30

 Private Size As New Size(683, 614)

 Private GroundY As Integer

 Private BallRadius As Integer
 Public BallMass As Integer
 Public BallV, BallF, InitialBallS, BallS As PointF
 'BallS: X = pixels right from left edge, Y = pixels up from ground
 Public BallAngle, BallSpeed As Double
 Private BallOutOfTop As Boolean = False
 Private AmountOutOfTop As Decimal
 Public g As Double = -9.8

 Public T As Double
 Public Tmicros As Integer
 Public TTimer As Date
 Public Enabled As Boolean

 Private WallX, WallWidth As Integer
 Public WallY1, WallY2 As Double
 Private BallOffset As Point

 Public FiringAngle As Single
 Public FiringV As PointF
 Public FiringSpeed As Single

 Public Sub New(ByVal InputMode As SimulationMode)
 Mode = InputMode
 Name = "ProjectileMotionSimulation"
 State = ScreenState.NoInput
 Location = New Point(277, 106)

Mechanics Simulator 2014

Matthew Arnold 126 Candidate Number - 7061

 GroundY = 500
 WallX = 600
 WallWidth = 5
 BallRadius = 8
 T = 0
 InitialBallS = New PointF(50, 0)

 If Mode = SimulationMode.Simulation Then
 WallY1 = 100
 WallY2 = 250
 FiringSpeed = 25
 FiringAngle = 45
 ResetVariables()
 End If
 End Sub

 Public Sub ResetVariables()
 'Set variables to their correct initial conditions
 FiringV = New PointF(FiringSpeed * Cos(Main.Rad(FiringAngle)), FiringSpeed *
Sin(Main.Rad(FiringAngle)))

 Tmicros = 0
 T = 0
 BallS = InitialBallS
 BallV = FiringV
 BallAngle = FiringAngle
 BallOutOfTop = False
 End Sub

 Public Sub SetTestVariables(ByVal InputWallHeight As Integer, ByVal InputWallGap
As Integer, ByVal InputFiringSpeed As Single, ByVal InputFiringAngle As Single, ByVal
InputGroundDistance As Single)
 'Allows input of variables other than the defualt.
 'This is needed for the test mode
 Scale = 550 / InputGroundDistance

 WallY2 = 500 - Pixels(InputWallHeight)
 WallY1 = 500 - Pixels(InputWallHeight + InputWallGap)

 FiringSpeed = InputFiringSpeed
 FiringAngle = InputFiringAngle

 ResetVariables()
 End Sub

 Public Function Metres(ByVal Pixels As Double) As Double
 Return Pixels / Scale
 End Function
 Public Function Pixels(ByVal Metres As Double) As Double
 Return Metres * Scale
 End Function

 Public Overrides Sub Update()
 If Enabled = True Then
 If (Now - TTimer).TotalMilliseconds > 25 Then
 TTimer = Now

 Dim NewBallX, NewBallY As Double

 'Every 25 milliseconds (ish)

Mechanics Simulator 2014

Matthew Arnold 127 Candidate Number - 7061

 'Gradually increase the time variable
 'Calculate the expected position as if no collision happens, then
 'see if there should be a collision
 For i = 1 To 10000
 NewBallX = InitialBallS.X + Pixels(FiringV.X * T)
 NewBallY = InitialBallS.Y + Pixels(FiringV.Y * T + 0.5 * g * T ^
2)

 'Update ball's velocity
 BallV.Y = FiringV.Y + g * T

 If Abs(BallV.X) > 0 Then
 If NewBallX < 0 Or (BallS.X <= WallX And NewBallX >= WallX And
(GroundY - NewBallY <= WallY1 Or GroundY - NewBallY >= WallY2)) Or NewBallX >
Size.Width - BallRadius Then
 If NewBallX < 0 Then
 'Ball reaches left edge
 BallS.X = 0
 BallV.X = 0
 ElseIf NewBallX >= Size.Width - BallRadius Then
 'Ball has gone through wall and reaches right edge
 BallS.X = Size.Width - BallRadius
 BallV.X = 0
 ElseIf NewBallX > WallX Then
 'Ball hits wall
 BallS.X = WallX
 BallV.X = 0
 End If
 Else
 'No special cases, free space ahead
 BallS.X = NewBallX
 End If
 End If

 If Abs(BallV.Y) > 0 Then
 If NewBallY < 0 Or NewBallY > GroundY - 2 * BallRadius Then
 If NewBallY > GroundY - 2 * BallRadius Then
 'Ball reaches top edge
 BallOutOfTop = True
 AmountOutOfTop = Round(Metres(NewBallY - (GroundY - 2
* BallRadius)), 2)
 BallS.Y = GroundY - 2 * BallRadius
 BallV.Y = 0
 ElseIf NewBallY < 0 Then
 'Ball Reaches ground
 BallS.Y = 0
 BallV.Y = 0
 BallV.X = 0
 Finished = True
 End If
 Else
 'No special cases, free space ahead
 BallS.Y = NewBallY
 BallOutOfTop = False
 End If
 End If

 'Increase time by 1ms
 Tmicros += 1
 T = Tmicros / 1000000

Mechanics Simulator 2014

Matthew Arnold 128 Candidate Number - 7061

 Next
 End If
 '0.01s of simulation has passed
 End If
 End Sub

 Public Overrides Sub Draw()
 'SKY
 Main.GFX.FillRectangle(Brushes.LightSkyBlue, Location.X, Location.Y,
Size.Width, GroundY)
 'GROUND
 Main.GFX.FillRectangle(Brushes.ForestGreen, Location.X, Location.Y + GroundY,
Size.Width, Size.Height - GroundY)
 'WALL
 Main.GFX.FillRectangle(Brushes.Gray, Location.X + WallX + BallRadius,
Location.Y, WallWidth, CInt(WallY1) - BallRadius)
 Main.GFX.FillRectangle(Brushes.Gray, Location.X + WallX + BallRadius,
Location.Y + CInt(WallY2) + BallRadius, WallWidth, GroundY - CInt(WallY2) -
BallRadius)
 'BALL (Or OuOfTop arrow)
 If BallOutOfTop = True Then
 Main.GFX.FillEllipse(New SolidBrush(Color.FromArgb(50, Color.Black)),
Location.X + BallS.X - BallRadius, Location.Y + GroundY - BallS.Y - 2 * BallRadius, 2
* BallRadius, 2 * BallRadius)
 Main.GFX.DrawLine(New Pen(Brushes.Red, 3), Location.X + BallS.X,
Location.Y + 3 * BallRadius + 2 * BallRadius, Location.X + BallS.X, Location.Y + 2 *
BallRadius)
 Main.GFX.DrawLine(New Pen(Brushes.Red, 3), Location.X + BallS.X -
BallRadius, Location.Y + BallRadius + 2 * BallRadius, Location.X + BallS.X, Location.Y
+ 2 * BallRadius)
 Main.GFX.DrawLine(New Pen(Brushes.Red, 3), Location.X + BallS.X +
BallRadius, Location.Y + BallRadius + 2 * BallRadius, Location.X + BallS.X, Location.Y
+ 2 * BallRadius)
 Main.GFX.DrawString(AmountOutOfTop & "m", Main.Arial_12_Bold, Brushes.Red,
Location.X + BallS.X + BallRadius * 2, Location.Y + 2 * BallRadius)
 Else
 Main.GFX.FillEllipse(Brushes.Black, Location.X + BallS.X - BallRadius,
Location.Y + GroundY - BallS.Y - 2 * BallRadius, 2 * BallRadius, 2 * BallRadius)
 End If
 End Sub

 Public Sub DrawToCustomImage(ByRef BMP As Image)
 'Used for drawing the simulation when it is used as a preview on the
simulation menu
 'SKY
 Graphics.FromImage(BMP).FillRectangle(Brushes.LightSkyBlue, 0, 0, Size.Width \
2, GroundY \ 2)
 'GROUND
 Graphics.FromImage(BMP).FillRectangle(Brushes.ForestGreen, 0, GroundY \ 2,
Size.Width \ 2, (Size.Height - GroundY) \ 2)
 'WALL
 Graphics.FromImage(BMP).FillRectangle(Brushes.Gray, (WallX + BallRadius) \ 2,
0, WallWidth \ 2, (CInt(WallY1) - BallRadius) \ 2)
 Graphics.FromImage(BMP).FillRectangle(Brushes.Gray, (WallX + BallRadius) \ 2,
(CInt(WallY2) + BallRadius) \ 2, WallWidth \ 2, (GroundY - CInt(WallY2) - BallRadius)
\ 2)
 'BALL (Or OuOfTop arrow)
 Graphics.FromImage(BMP).FillEllipse(Brushes.Black, (BallS.X - BallRadius) \ 2,
(GroundY - BallS.Y - 2 * BallRadius) \ 2, BallRadius, BallRadius)
 End Sub
End Class

Mechanics Simulator 2014

Matthew Arnold 129 Candidate Number - 7061

ResolvingForces

This screen is for controlling the Resolving Forces Simulation. There are variables for changing

various aspects of the Simulation. There are also buttons for the Play, Pause and Stop/Reset

commands. The main feature of this screen is its instance of the ResolvingForcesSimulation, which is

responsible for the actual Simulation, as well as the animation.

Imports System.Math

Public Class ResolvingForces
 Inherits BaseScreen

 Private MenuButton As New TextButton("MENU", Main.Arial_20_Bold,
ProgramSection.Simulation, New Point(822, 50), -1, 35, 3, 1)
 Private SettingsButton As New TextButton("SETTINGS", Main.Arial_20_Bold,
ProgramSection.Simulation, New Point(792, 10), -1, 35, 3, 1)

 Private PlayButton As New PictureButton(New Point(522, 10),
My.Resources.PlayDefault, My.Resources.PlayHover, My.Resources.PlayDown, -1, -1)
 Private PauseButton As New PictureButton(New Point(612, 10),
My.Resources.PauseDefault, My.Resources.PauseHover, My.Resources.PauseDown, -1, -1)
 Private StopButton As New PictureButton(New Point(702, 10),
My.Resources.StopDefault, My.Resources.StopHover, My.Resources.StopDown, -1, -1)

 Private Simulation As New ResolvingForcesSimulation(SimulationMode.Simulation)

 Private m1MassBox, m2MassBox, FrictionBox, AccelerationBox, GravityBox,
XDistanceBox, YDistanceBox, TimeBox, VelocityBox, TensionBox As NumberBox

m1MassBox : NumberBox

XDistanceBox : NumberBox

FrictionBox : NumberBox

m2MassBox : NumberBox

YDistanceBox : NumberBox

VelocityBox : NumberBox

AccelerationBox : NumberBox

GravityBox : NumberBox

TimeBox : NumberBox

TensionBox : NumberBox

PlayButton : PictureButton

PauseButton : PictureButton

StopButton :

PictureButton

Simulation :

ResolvingForcesSimulation

SettingsButton : TextButton

MenuButton : TextButton

Mechanics Simulator 2014

Matthew Arnold 130 Candidate Number - 7061

 Public Sub New()
 Dim TempY, TempX As Integer

 Name = "ResolvingForces"
 State = ScreenState.Active
 Location = New Point(0, 0)

 'Create the input boxes in the correct positions for each variable
 TempY = Main.AutoFitText(0, 720 * 1 / 7, 960 * 2 / 7, Main.Arial_15_Bold,
"Mass 1 (m1)", False)
 TempX = Main.GFX.MeasureString("Mass:", Main.Arial_15).Width + 10
 m1MassBox = New NumberBox(New Point(TempX, TempY), Main.Arial_10,
ProgramSection.Simulation, 3, 960 * 2 / 7 - TempX - 10)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Mass:", False)

 TempX = Main.GFX.MeasureString("Distance to Pulley:", Main.Arial_15).Width +
10
 XDistanceBox = New NumberBox(New Point(TempX, TempY), Main.Arial_10,
ProgramSection.Simulation, 3, 960 * 2 / 7 - TempX - 10)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Distance to
Pulley:", False)

 TempX = Main.GFX.MeasureString("Friction:", Main.Arial_15).Width + 10
 FrictionBox = New NumberBox(New Point(TempX, TempY), Main.Arial_10,
ProgramSection.Simulation, 3, 960 * 2 / 7 - TempX - 10)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Friction:",
False)

 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15_Bold, "Mass 2
(m2)", False)
 TempX = Main.GFX.MeasureString("Mass:", Main.Arial_15).Width + 10
 m2MassBox = New NumberBox(New Point(TempX, TempY), Main.Arial_10,
ProgramSection.Simulation, 3, 960 * 2 / 7 - TempX - 10)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Mass:", False)

 TempX = Main.GFX.MeasureString("Distance to Ground:", Main.Arial_15).Width +
10
 YDistanceBox = New NumberBox(New Point(TempX, TempY), Main.Arial_10,
ProgramSection.Simulation, 3, 960 * 2 / 7 - TempX - 10)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Distance to
Ground:", False)

 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15_Bold, "System",
False)
 TempX = Main.GFX.MeasureString("Velocity:", Main.Arial_15).Width + 10
 VelocityBox = New NumberBox(New Point(TempX, TempY), Main.Arial_10,
ProgramSection.Simulation, 1, 960 * 2 / 7 - TempX - 10)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Velocity:",
False)

 TempX = Main.GFX.MeasureString("Acceleration:", Main.Arial_15).Width + 10
 AccelerationBox = New NumberBox(New Point(TempX, TempY), Main.Arial_10,
ProgramSection.Simulation, 3, 960 * 2 / 7 - TempX - 10)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15,
"Acceleration:", False)

 TempX = Main.GFX.MeasureString("Gravity:", Main.Arial_15).Width + 10
 GravityBox = New NumberBox(New Point(TempX, TempY), Main.Arial_10,
ProgramSection.Simulation, 3, 960 * 2 / 7 - TempX - 10)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Gravity:",
False)

Mechanics Simulator 2014

Matthew Arnold 131 Candidate Number - 7061

 TempX = Main.GFX.MeasureString("Time:", Main.Arial_15).Width + 10
 TimeBox = New NumberBox(New Point(TempX, TempY), Main.Arial_10,
ProgramSection.Simulation, 1, 960 * 2 / 7 - TempX - 10)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Time:", False)

 TempX = Main.GFX.MeasureString("Tension:", Main.Arial_15).Width + 10
 TensionBox = New NumberBox(New Point(TempX, TempY), Main.Arial_10,
ProgramSection.Simulation, 1, 960 * 2 / 7 - TempX - 10)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Tension:",
False)

 GetValuesFromSim()
 End Sub

 Public Overrides Sub HandleInput()
 Dim ChangeOccured As Boolean = True
 If MenuButton.Clicked = "Clicked" Then
 ScreenManager.UnloadScreen(Name)
 ScreenManager.AddScreen(New SimulationMenu)
 End If
 If SettingsButton.Clicked() = "Clicked" Then
 ScreenManager.UnloadScreen(Name)
 ScreenManager.AddScreen(New Settings({New ResolvingForces}))
 End If

 'Check input for play, pause, stop
 If PlayButton.Clicked() = "Clicked" Then
 Simulation.TTimer = Now
 Simulation.Enabled = True
 ElseIf PauseButton.Clicked() = "Clicked" Then
 Simulation.Enabled = False
 ElseIf StopButton.Clicked() = "Clicked" Then
 Simulation.Enabled = False
 Simulation.ResetVariables()
 GetValuesFromSim()
 End If
 For Each Key In Main.KeysDown
 If Key = 32 Then
 'Space Bar
 If Simulation.Enabled = True Then
 Simulation.Enabled = False
 Else
 Simulation.TTimer = Now
 Simulation.Enabled = True
 End If
 End If
 Next

 If Simulation.Enabled = False And Simulation.T = 0 Then
 'Acceleration = (m2Mass * g - Friction) / (m1Mass + m2Mass)
 'Tension = Acceleration * m1Mass + Friction
 'Friction = m2Mass * g - m1Mass * Acceleration - m2Mass * Acceleration
 'Acceleration = (Tension - Friction) / m1Mass

 'Check for input from variable input boxes, then update the simulation
with the values.
 'Sometimes when one value changes, other dependent values must change too.
 'For example, when the friction is changed, the acceleration and tension
changes
 If m1MassBox.HandleInput() = "Entered" And m1MassBox.Text <> "" Then

Mechanics Simulator 2014

Matthew Arnold 132 Candidate Number - 7061

 Simulation.m1Mass = CDec(m1MassBox.Text)
 ElseIf XDistanceBox.HandleInput() = "Entered" And XDistanceBox.Text <> ""
Then
 Simulation.xDist = CDec(XDistanceBox.Text)
 Simulation.yDist = Simulation.xDist * 0.8
 ElseIf FrictionBox.HandleInput() = "Entered" And FrictionBox.Text <> ""
Then
 Simulation.Friction = CDec(FrictionBox.Text)
 If Simulation.Friction > Simulation.m2Mass * Simulation.g Then
 Simulation.Friction = Simulation.m2Mass * Simulation.g
 Main.MessageBox("Error: Friction cannot be that high")
 End If
 Simulation.Acceleration = (Simulation.m2Mass * Simulation.g -
Simulation.Friction) / (Simulation.m1Mass + Simulation.m2Mass)
 Simulation.Tension = Simulation.Acceleration * Simulation.m1Mass +
Simulation.Friction
 ElseIf m2MassBox.HandleInput() = "Entered" And m2MassBox.Text <> "" Then
 Simulation.m2Mass = CDec(m2MassBox.Text)
 ElseIf YDistanceBox.HandleInput() = "Entered" And YDistanceBox.Text <> ""
Then
 If YDistanceBox.Text <> "0" Then
 Simulation.yDist = CDec(YDistanceBox.Text)
 Simulation.xDist = Simulation.yDist / 0.8
 Else
 Main.MessageBox("Error: Distance to Ground cannot be 0")
 End If
 ElseIf AccelerationBox.HandleInput() = "Entered" And AccelerationBox.Text
<> "" Then
 Simulation.Acceleration = CDec(AccelerationBox.Text)
 Simulation.Friction = Simulation.m2Mass * Simulation.g -
Simulation.m1Mass * Simulation.Acceleration - Simulation.m2Mass *
Simulation.Acceleration
 Simulation.Tension = Simulation.Acceleration * Simulation.m1Mass +
Simulation.Friction
 ElseIf GravityBox.HandleInput() = "Entered" And GravityBox.Text <> "" Then
 Simulation.g = CDec(GravityBox.Text)
 Else
 ChangeOccured = False
 End If

 'Variables entered
 If ChangeOccured = True Then
 Simulation.ResetVariables()
 GetValuesFromSim()
 End If
 End If
 End Sub

 Private Sub GetValuesFromSim()
 'values from simulation into boxes
 m1MassBox.Text = Round(Simulation.m1Mass, 2)
 m2MassBox.Text = Round(Simulation.m2Mass, 2)
 XDistanceBox.Text = Round(Simulation.m1X, 2)
 FrictionBox.Text = Round(Simulation.Friction, 2)
 YDistanceBox.Text = Round(Simulation.yDist - Simulation.m2Y, 2)
 VelocityBox.Text = Round(Simulation.Velocity, 2)
 GravityBox.Text = Round(Simulation.g, 2)
 AccelerationBox.Text = Round(Simulation.Acceleration, 2)
 TimeBox.Text = Round(Simulation.T, 2)
 TensionBox.Text = Round(Simulation.Tension, 2)
 End Sub

Mechanics Simulator 2014

Matthew Arnold 133 Candidate Number - 7061

 Public Overrides Sub Update()
 Simulation.Update()

 If Simulation.Enabled = True Then
 GetValuesFromSim()
 End If
 End Sub

 Public Overrides Sub Draw()
 Dim TempY As Integer

 'MAIN TITLE BAR
 'Title
 Main.GFX.DrawString("Resolving Forces", Main.Arial_30_Bold, New
SolidBrush(Color.FromArgb(0, 90, 194)), New Point(261 -
Main.GFX.MeasureString("Resolving Forces", Main.Arial_30_Bold).Width \ 2, 25))
 'Simulation control buttons
 PlayButton.Draw()
 PauseButton.Draw()
 StopButton.Draw()
 'Other buttons
 MenuButton.Draw()
 SettingsButton.Draw()

 'DIVIDING LINES
 Main.GFX.DrawLine(New Pen(New SolidBrush(Color.FromArgb(0, 90, 194)), 5), New
Point(960 * 2 / 7, 720 * 1 / 7), New Point(960, 720 * 1 / 7))
 Main.GFX.DrawLine(New Pen(New SolidBrush(Color.FromArgb(0, 90, 194)), 5), New
Point(960 * 2 / 7, 720 * 1 / 7 - 2), New Point(960 * 2 / 7, 720))

 'VARIABLE SETTINGS
 TempY = Main.AutoFitText(0, 720 * 1 / 7, 960 * 2 / 7, Main.Arial_15_Bold,
"Mass 1 (m1)")
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Mass:")
 m1MassBox.Draw()
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Distance to
Pulley:")
 XDistanceBox.Draw()
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Friction:")
 FrictionBox.Draw()
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15_Bold, "Mass 2
(m2)")
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Mass:")
 m2MassBox.Draw()
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Distance to
Ground:")
 YDistanceBox.Draw()
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15_Bold, "System")
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Velocity:")
 VelocityBox.Draw()
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15,
"Acceleration:")
 AccelerationBox.Draw()
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Gravity:")
 GravityBox.Draw()
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Time:")
 TimeBox.Draw()
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Tension:")
 TensionBox.Draw()

Mechanics Simulator 2014

Matthew Arnold 134 Candidate Number - 7061

 'SIMULATION
 Simulation.Draw()

 'MAIN RECT: 277, 106, 683, 614
 End Sub
End Class

ResolvingForcesSimulation

This class purely controls the actual Simulation, and only displays the animation for Resolving Forces.

The DrawToCustomImage procedure is used for the Simulation previews on the Simulations Menu. It

draws the animation with half the size.

Imports System.Math

Public Class ResolvingForcesSimulation
 Inherits BaseScreen

 Public Mode As SimulationMode
 Public Finished As Boolean = False
 Public Visible As Boolean = True

 Public Scale As Double

 Private Size As New Size(683, 614)

 Public g As Double = 9.8

 Public T As Double
 Public Tmicros As Integer
 Public TTimer As Date
 Public Enabled As Boolean

 Public m1Mass, m2Mass, Friction, Acceleration, Velocity, Tension, m1X, m2Y, xDist,
yDist As Single

 Public Sub New(ByVal InputMode As SimulationMode)
 Mode = InputMode
 Name = "ResolvingForcesSimulation"
 State = ScreenState.NoInput
 Location = New Point(277, 106)

 T = 0
 Tmicros = 0

 If Mode = SimulationMode.Simulation Then
 'Default values for variables in simulation mode

Mechanics Simulator 2014

Matthew Arnold 135 Candidate Number - 7061

 m1Mass = 5
 m2Mass = 2
 'Friction needs to be less than m2Mass * g
 Friction = 15
 xDist = 1
 yDist = xDist * 0.8
 ResetVariables()
 End If
 End Sub

 Public Sub ResetVariables()
 'Set variables to their correct initial conditions
 Scale = 250 / xDist

 m1X = xDist
 m2Y = 0
 Velocity = 0

 Acceleration = (m2Mass * g - Friction) / (m1Mass + m2Mass)
 Tension = Acceleration * m1Mass + Friction

 'Friction = m2Mass * g - m1Mass * Acceleration - m2Mass * Acceleration
 'Acceleration = (Tension - Friction) / m1Mass

 Tmicros = 0
 T = 0
 End Sub

 Public Sub SetTestVariables(ByVal InputM1Mass As Single, ByVal InputM2Mass As
Single, ByVal InputFriction As Single, ByVal InputXDist As Single)
 'Allows input of variables other than the defualt.
 'This is needed for the test mode
 m1Mass = InputM1Mass
 m2Mass = InputM2Mass
 Friction = InputFriction
 xDist = InputXDist
 yDist = xDist * 0.8

 ResetVariables()
 End Sub

 Public Function Metres(ByVal Pixels As Double) As Double
 Return Pixels / Scale
 End Function
 Public Function Pixels(ByVal Metres As Double) As Double
 Return Metres * Scale
 End Function

 Public Overrides Sub Update()
 Dim NewM1X, NewM2Y As Single

 If Enabled = True Then
 If (Now - TTimer).TotalMilliseconds > 25 Then
 TTimer = Now

 'Every 25 milliseconds (ish)

 'Gradually increase the time variable
 'Calculate the expected position as if no collision happens, then
 'see if there should be a collision
 For i = 1 To 10000

Mechanics Simulator 2014

Matthew Arnold 136 Candidate Number - 7061

 NewM1X = xDist - 0.5 * Acceleration * T ^ 2
 NewM2Y = 0.5 * Acceleration * T ^ 2
 Velocity = Acceleration * T

 If Velocity > 0 Then
 If NewM2Y >= yDist Then
 'm2 reaches floor, so stop
 Velocity = 0
 Acceleration = 0
 m2Y = yDist
 m1X = xDist * 0.2
 Finished = True
 Else
 'no collision, so continue as usual
 m1X = NewM1X
 m2Y = NewM2Y
 End If
 End If

 Tmicros += 1
 T = Tmicros / 1000000
 Next
 End If
 End If
 End Sub

 Public Overrides Sub Draw()
 Dim Centre As New Point(Location.X + Size.Width \ 2, Location.Y + Size.Height
\ 2)
 'SKY
 Main.GFX.FillRectangle(Brushes.LightSkyBlue, Location.X, Location.Y,
Size.Width, Size.Height)
 'PULLEY
 Main.GFX.DrawLine(New Pen(Brushes.Black, 10), Centre.X + 10, Centre.Y + 10,
Centre.X - 15, Centre.Y - 15)
 Main.GFX.FillEllipse(Brushes.Brown, Centre.X - 40, Centre.Y - 40, 30, 30)
 Main.GFX.FillEllipse(Brushes.Silver, Centre.X - 30, Centre.Y - 30, 10, 10)
 'TABLE
 Main.GFX.FillRectangle(Brushes.ForestGreen, Centre.X, Centre.Y, Size.Width -
Size.Width \ 2, Size.Height - Size.Height \ 2)

 'MASSES
 'm1
 Main.GFX.FillRectangle(Brushes.Gray, CInt(Round(630 + Pixels(m1X))), Centre.Y
- 80, 70, 80)
 Main.GFX.DrawString("m1: " & m1Mass & "kg", Main.Arial_8, Brushes.White,
CInt(Round(630 + Pixels(m1X))), Centre.Y - 80)
 'm2
 Main.GFX.FillRectangle(Brushes.Gray, Centre.X - 70, CInt(Round(430 +
Pixels(m2Y))), 60, 50)
 Main.GFX.DrawString("m2: " & m2Mass & "kg", Main.Arial_8, Brushes.White,
Centre.X - 70, CInt(Round(430 + Pixels(m2Y))))
 'STRINGS
 Main.GFX.DrawLine(New Pen(Brushes.Goldenrod, 2), Centre.X - 25, Centre.Y - 39,
CInt(Round(630 + Pixels(m1X))), Centre.Y - 39)
 Main.GFX.DrawArc(New Pen(Brushes.Goldenrod, 2), Centre.X - 40, Centre.Y - 40,
30, 30, 180, 90)
 Main.GFX.DrawLine(New Pen(Brushes.Goldenrod, 2), Centre.X - 39, Centre.Y - 25,
Centre.X - 39, CInt(Round(430 + Pixels(m2Y))))
 'FLOOR

Mechanics Simulator 2014

Matthew Arnold 137 Candidate Number - 7061

 Main.GFX.FillRectangle(Brushes.ForestGreen, Location.X, CInt(480 +
Pixels(yDist)), Size.Width \ 2, Location.Y + Size.Height - CInt(480 + Pixels(yDist)))
 End Sub

 Public Sub DrawToCustomImage(ByRef BMP As Image)
 'Used for drawing the simulation when it is used as a preview on the
simulation menu
 Dim Centre As New Point(Size.Width \ 4, Size.Height \ 4)
 'SKY
 Graphics.FromImage(BMP).FillRectangle(Brushes.LightSkyBlue, 0, 0, Size.Width \
2, Size.Height \ 2)
 'PULLEY
 Graphics.FromImage(BMP).DrawLine(New Pen(Brushes.Black, 10), Centre.X + 10 \
2, Centre.Y + 10 \ 2, Centre.X - 15 \ 2, Centre.Y - 15 \ 2)
 Graphics.FromImage(BMP).FillEllipse(Brushes.Brown, Centre.X - 40 \ 2, Centre.Y
- 40 \ 2, 30 \ 2, 30 \ 2)
 Graphics.FromImage(BMP).FillEllipse(Brushes.Silver, Centre.X - 30 \ 2,
Centre.Y - 30 \ 2, 10 \ 2, 10 \ 2)
 'TABLE
 Graphics.FromImage(BMP).FillRectangle(Brushes.ForestGreen, Centre.X, Centre.Y,
(Size.Width - Size.Width \ 2) \ 2, (Size.Height - Size.Height \ 2) \ 2)

 'MASSES
 'm1
 Graphics.FromImage(BMP).FillRectangle(Brushes.Gray, Centre.X +
Round(Pixels(m1X)) \ 2, Centre.Y - 80 \ 2, 70 \ 2, 80 \ 2)
 'm2
 Graphics.FromImage(BMP).FillRectangle(Brushes.Gray, Centre.X - 70 \ 2,
Centre.Y + 20 + Round(Pixels(m2Y)) \ 2, 60 \ 2, 50 \ 2)
 'STRINGS
 Graphics.FromImage(BMP).DrawLine(New Pen(Brushes.Goldenrod, 2), Centre.X - 25
\ 2, Centre.Y - 39 \ 2, Centre.X + Round(Pixels(m1X)) \ 2, Centre.Y - 39 \ 2)
 Graphics.FromImage(BMP).DrawArc(New Pen(Brushes.Goldenrod, 2), Centre.X - 40 \
2, Centre.Y - 40 \ 2, 30 \ 2, 30 \ 2, 180 \ 2, 90 \ 2)
 Graphics.FromImage(BMP).DrawLine(New Pen(Brushes.Goldenrod, 2), Centre.X - 39
\ 2, Centre.Y - 25 \ 2, Centre.X - 39 \ 2, Centre.Y + 20 + Round(Pixels(m2Y)) \ 2)
 'FLOOR
 Graphics.FromImage(BMP).FillRectangle(Brushes.ForestGreen, 0, (480 +
Pixels(yDist)) \ 2, Size.Width \ 4, (Size.Height - (480 + Pixels(yDist))) \ 2)
 End Sub
End Class

ForcesOnSlopes

This screen is for controlling the Forces On Slopes Simulation. There are variables for changing

various aspects of the Simulation. There are also buttons for the Play, Pause and Stop/Reset

commands. The main feature of this screen is its instance of the ForcesOnSlopesSimulation, which is

responsible for the actual Simulation, as well as the animation.

Mechanics Simulator 2014

Matthew Arnold 138 Candidate Number - 7061

Imports System.Math

Public Class ForcesOnSlopes
 Inherits BaseScreen

 Private MenuButton As New TextButton("MENU", Main.Arial_20_Bold,
ProgramSection.Simulation, New Point(822, 50), -1, 35, 3, 1)
 Private SettingsButton As New TextButton("SETTINGS", Main.Arial_20_Bold,
ProgramSection.Simulation, New Point(792, 10), -1, 35, 3, 1)

 Private PlayButton As New PictureButton(New Point(522, 10),
My.Resources.PlayDefault, My.Resources.PlayHover, My.Resources.PlayDown, -1, -1)
 Private PauseButton As New PictureButton(New Point(612, 10),
My.Resources.PauseDefault, My.Resources.PauseHover, My.Resources.PauseDown, -1, -1)
 Private StopButton As New PictureButton(New Point(702, 10),
My.Resources.StopDefault, My.Resources.StopHover, My.Resources.StopDown, -1, -1)

 Private Simulation As New ForcesOnSlopesSimulation(SimulationMode.Simulation)

 Private MassBox, FrictionBox, DistanceToWallBox, SlopeAngleBox, AccelerationBox,
GravityBox, VelocityBox, TimeBox As NumberBox

 Public Sub New()
 Dim TempY, TempX As Integer

 Name = "ForcesOnSlopes"
 State = ScreenState.Active
 Location = New Point(0, 0)

 'Create the input boxes in the correct positions for each variable

MassBox : NumberBox

DistanceToWallBox : NumberBox

FrictionBox : NumberBox

AccelerationBox : NumberBox

VelocityBox : NumberBox

SlopeAngleBox : NumberBox

GravityBox : NumberBox

TimeBox : NumberBox

PlayButton : PictureButton

PauseButton : PictureButton

StopButton :

PictureButton

Simulation :

ForcesOnSlopesSimulation

SettingsButton : TextButton

MenuButton : TextButton

Mechanics Simulator 2014

Matthew Arnold 139 Candidate Number - 7061

 TempY = Main.AutoFitText(0, 720 * 1 / 7, 960 * 2 / 7, Main.Arial_15_Bold,
"Block", False)
 TempX = Main.GFX.MeasureString("Mass:", Main.Arial_15).Width + 10
 MassBox = New NumberBox(New Point(TempX, TempY), Main.Arial_10,
ProgramSection.Simulation, 3, 960 * 2 / 7 - TempX - 10)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Mass:", False)

 TempX = Main.GFX.MeasureString("Distance to Wall:", Main.Arial_15).Width + 10
 DistanceToWallBox = New NumberBox(New Point(TempX, TempY), Main.Arial_10,
ProgramSection.Simulation, 3, 960 * 2 / 7 - TempX - 10)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Distance to
Wall:", False)

 TempX = Main.GFX.MeasureString("Friction:", Main.Arial_15).Width + 10
 FrictionBox = New NumberBox(New Point(TempX, TempY), Main.Arial_10,
ProgramSection.Simulation, 3, 960 * 2 / 7 - TempX - 10)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Friction:",
False)

 TempX = Main.GFX.MeasureString("Acceleration:", Main.Arial_15).Width + 10
 AccelerationBox = New NumberBox(New Point(TempX, TempY), Main.Arial_10,
ProgramSection.Simulation, 1, 960 * 2 / 7 - TempX - 10)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15,
"Acceleration:", False)

 TempX = Main.GFX.MeasureString("Velocity:", Main.Arial_15).Width + 10
 VelocityBox = New NumberBox(New Point(TempX, TempY), Main.Arial_10,
ProgramSection.Simulation, 1, 960 * 2 / 7 - TempX - 10)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Velocity:",
False)

 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15_Bold, "Slope",
False)
 TempX = Main.GFX.MeasureString("Angle:", Main.Arial_15).Width + 10
 SlopeAngleBox = New NumberBox(New Point(TempX, TempY), Main.Arial_10,
ProgramSection.Simulation, 3, 960 * 2 / 7 - TempX - 10)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Angle:",
False)

 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15_Bold, "System",
False)
 TempX = Main.GFX.MeasureString("Gravity:", Main.Arial_15).Width + 10
 GravityBox = New NumberBox(New Point(TempX, TempY), Main.Arial_10,
ProgramSection.Simulation, 3, 960 * 2 / 7 - TempX - 10)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Gravity:",
False)

 TempX = Main.GFX.MeasureString("Time:", Main.Arial_15).Width + 10
 TimeBox = New NumberBox(New Point(TempX, TempY), Main.Arial_10,
ProgramSection.Simulation, 1, 960 * 2 / 7 - TempX - 10)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Time:", False)

 GetValuesFromSim()
 End Sub

 Public Overrides Sub HandleInput()
 Dim ChangeOccured As Boolean = True
 If MenuButton.Clicked = "Clicked" Then
 ScreenManager.UnloadScreen(Name)
 ScreenManager.AddScreen(New SimulationMenu)
 End If

Mechanics Simulator 2014

Matthew Arnold 140 Candidate Number - 7061

 If SettingsButton.Clicked() = "Clicked" Then
 ScreenManager.UnloadScreen(Name)
 ScreenManager.AddScreen(New Settings({New ForcesOnSlopes}))
 End If

 'Check input for play, pause, stop
 If PlayButton.Clicked() = "Clicked" Then
 Simulation.TTimer = Now
 Simulation.Enabled = True
 ElseIf PauseButton.Clicked() = "Clicked" Then
 Simulation.Enabled = False
 ElseIf StopButton.Clicked() = "Clicked" Then
 Simulation.Enabled = False
 Simulation.ResetVariables()
 GetValuesFromSim()
 End If
 For Each Key In Main.KeysDown
 If Key = 32 Then
 'Space Bar
 If Simulation.Enabled = True Then
 Simulation.Enabled = False
 Else
 Simulation.TTimer = Now
 Simulation.Enabled = True
 End If
 End If
 Next

 If Simulation.Enabled = False And Simulation.T = 0 Then
 'Check for input form variable input boxes, then update the simulation
with the values.
 'Sometimes when one value changes, other dependent values must change too.
 If MassBox.HandleInput = "Entered" And MassBox.Text <> "" Then
 Simulation.Mass = CDec(MassBox.Text)
 ElseIf DistanceToWallBox.HandleInput = "Entered" And
DistanceToWallBox.Text <> "" Then
 If DistanceToWallBox.Text <> "0" Then
 Simulation.SlopeDistance = CDec(DistanceToWallBox.Text)
 Else
 Main.MessageBox("Error: Distance to Wall cannot be 0")
 End If
 ElseIf FrictionBox.HandleInput = "Entered" And FrictionBox.Text <> "" Then
 'Friction > Mass * g * Sin(Main.Rad(SlopeAngle))
 If CDec(FrictionBox.Text) > Simulation.Mass * Simulation.g *
Sin(Main.Rad(Simulation.SlopeAngle)) Then
 Main.MessageBox("Error: Friction cannot be that high")
 End If
 Simulation.Friction = CDec(FrictionBox.Text)
 ElseIf SlopeAngleBox.HandleInput = "Entered" And SlopeAngleBox.Text <> ""
Then
 If CDec(SlopeAngleBox.Text) >= 0 And CDec(SlopeAngleBox.Text) <= 90
Then
 Simulation.SlopeAngle = CDec(SlopeAngleBox.Text)
 Else
 Main.MessageBox("Error: Slope angle must be between 0 and 90
degrees")
 End If
 ElseIf GravityBox.HandleInput = "Entered" And GravityBox.Text <> "" Then
 Simulation.g = CDec(GravityBox.Text)
 Else
 ChangeOccured = False

Mechanics Simulator 2014

Matthew Arnold 141 Candidate Number - 7061

 End If

 'Variables entered
 If ChangeOccured = True Then
 Simulation.ResetVariables()
 GetValuesFromSim()
 End If
 End If
 End Sub

 Private Sub GetValuesFromSim()
 'values from simulation into boxes
 MassBox.Text = Round(Simulation.Mass, 2)
 DistanceToWallBox.Text = Round(Simulation.SlopeDistance -
Simulation.Displacement, 2)
 FrictionBox.Text = Round(Simulation.Friction, 2)
 AccelerationBox.Text = Round(Simulation.Acceleration, 2)
 VelocityBox.Text = Round(Simulation.Velocity, 2)
 SlopeAngleBox.Text = Round(Simulation.SlopeAngle, 2)
 GravityBox.Text = Round(Simulation.g, 2)
 TimeBox.Text = Round(Simulation.T, 2)
 End Sub

 Public Overrides Sub Update()
 Simulation.Update()

 If Simulation.Enabled = True Then
 GetValuesFromSim()
 End If
 End Sub

 Public Overrides Sub Draw()
 Dim TempY As Integer = 0

 'MAIN TITLE BAR
 'Title
 Main.GFX.DrawString("Forces On Slopes", Main.Arial_30_Bold, New
SolidBrush(Color.FromArgb(0, 90, 194)), New Point(261 - Main.GFX.MeasureString("Forces
On Slopes", Main.Arial_30_Bold).Width \ 2, 25))
 'Simulation control buttons
 PlayButton.Draw()
 PauseButton.Draw()
 StopButton.Draw()
 'Other buttons
 MenuButton.Draw()
 SettingsButton.Draw()

 'DIVIDING LINES
 Main.GFX.DrawLine(New Pen(New SolidBrush(Color.FromArgb(0, 90, 194)), 5), New
Point(960 * 2 / 7, 720 * 1 / 7), New Point(960, 720 * 1 / 7))
 Main.GFX.DrawLine(New Pen(New SolidBrush(Color.FromArgb(0, 90, 194)), 5), New
Point(960 * 2 / 7, 720 * 1 / 7 - 2), New Point(960 * 2 / 7, 720))

 'VARIABLE SETTINGS
 TempY = Main.AutoFitText(0, 720 * 1 / 7, 960 * 2 / 7, Main.Arial_15_Bold,
"Block")
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Mass:")
 MassBox.Draw()
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Distance to
Wall:")
 DistanceToWallBox.Draw()

Mechanics Simulator 2014

Matthew Arnold 142 Candidate Number - 7061

 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Friction:")
 FrictionBox.Draw()
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15,
"Acceleration:")
 AccelerationBox.Draw()
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Velocity:")
 VelocityBox.Draw()
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15_Bold, "Slope")
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Angle:")
 SlopeAngleBox.Draw()
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15_Bold, "System")
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Gravity:")
 GravityBox.Draw()
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "Time:")
 TimeBox.Draw()

 'SIMULATION
 Simulation.Draw()

 'MAIN RECT: 277, 106, 683, 614
 End Sub
End Class

ForcesOnSlopesSimulation

This class purely controls the actual Simulation, and only displays the animation for Forces On

Slopes. The DrawToCustomImage procedure is used for the Simulation previews on the Simulations

Menu. It draws the animation with half the size.

Imports System.Math

Public Class ForcesOnSlopesSimulation
 Inherits BaseScreen

 Public Mode As SimulationMode
 Public Finished As Boolean = False
 Public Visible As Boolean = True

 Public Scale As Double

 Private Size As New Size(683, 614)

 Private CritAngle As Single = Main.Deg(Atan(614 / 480))

 Public g As Double = 9.8

 Public T As Double

Mechanics Simulator 2014

Matthew Arnold 143 Candidate Number - 7061

 Public Tmicros As Integer
 Public TTimer As Date
 Public Enabled As Boolean

 Public Mass, Acceleration, Velocity, SlopeAngle, Displacement, Friction,
WallPosition, WallHeight As Single
 Public SlopeX, SlopeY, SlopeLength, SlopeDistance As Single

 Public Sub New(ByVal InputMode As SimulationMode)
 Mode = InputMode
 Name = "ForcesOnSlopesSimulation"
 State = ScreenState.NoInput
 Location = New Point(277, 106)

 T = 0
 Tmicros = 0
 WallHeight = 203

 If Mode = SimulationMode.Simulation Then
 'Set default vlaues for simulation mode
 Mass = 5
 SlopeAngle = 45
 'Friction must be less than mgsin(angle)
 Friction = 5
 SlopeDistance = 1

 ResetVariables()
 End If
 End Sub

 Public Sub ResetVariables()
 'Set variables to their correct initial conditions

 If SlopeAngle <= CritAngle Then
 SlopeX = 480
 SlopeY = SlopeX * Tan(Main.Rad(SlopeAngle))
 Else
 SlopeY = 614
 SlopeX = 614 / Tan(Main.Rad(SlopeAngle))
 End If
 SlopeLength = Sqrt(SlopeX ^ 2 + SlopeY ^ 2)

 Scale = (0.8 * SlopeLength - 60) / SlopeDistance

 If Friction > Mass * g * Sin(Main.Rad(SlopeAngle)) Then
 Friction = Mass * g * Sin(Main.Rad(SlopeAngle))
 End If

 Acceleration = (Mass * g * Sin(Main.Rad(SlopeAngle)) - Friction) / Mass
 Friction = Mass * g * Sin(Main.Rad(SlopeAngle)) - Mass * Acceleration

 Displacement = 0
 Velocity = 0

 Tmicros = 0
 T = 0
 End Sub

 Public Sub SetTestVariables(ByVal InputMass As Single, ByVal InputDistanceToWall
As Single, ByVal InputFriction As Single, ByVal InputSlopeAngle As Single)
 'Allows input of variables other than the defualt.

Mechanics Simulator 2014

Matthew Arnold 144 Candidate Number - 7061

 'This is needed for the test mode

 Mass = InputMass
 SlopeDistance = InputDistanceToWall
 Friction = InputFriction
 SlopeAngle = InputSlopeAngle

 ResetVariables()
 End Sub

 Public Function Metres(ByVal Pixels As Double) As Double
 Return Pixels / Scale
 End Function
 Public Function Pixels(ByVal Metres As Double) As Double
 Return Metres * Scale
 End Function

 Public Overrides Sub Update()
 Dim NewDisplacement As Single

 If Enabled = True Then
 If (Now - TTimer).TotalMilliseconds > 25 Then
 TTimer = Now
 'Every 25 milliseconds (ish)

 'Gradually increase the time variable
 'Calculate the expected position as if no collision happens, then
 'see if there should be a collision
 For i = 1 To 10000
 NewDisplacement = 0.5 * Acceleration * T ^ 2
 Velocity = Acceleration * T

 If Velocity > 0 Then
 If NewDisplacement >= SlopeDistance Then
 'Hits Wall
 Velocity = 0
 Displacement = SlopeDistance
 Acceleration = 0
 Finished = True
 Else
 Displacement = NewDisplacement
 End If
 End If

 Tmicros += 1
 T = Tmicros / 1000000
 Next
 End If
 End If
 End Sub

 Public Overrides Sub Draw()
 Dim SlopePoints(3), WallPoints(3), MassPoints(3) As Point
 'SKY
 Main.GFX.FillRectangle(Brushes.LightSkyBlue, Location.X, Location.Y,
Size.Width, Size.Height)
 'SLOPE
 If SlopeX = 480 Then
 SlopePoints(0) = New Point(Location.X + 480, Location.Y + Size.Height)
 SlopePoints(1) = New Point(Location.X, Location.Y + Size.Height)
 SlopePoints(2) = New Point(Location.X, Location.Y + Size.Height - SlopeY)

Mechanics Simulator 2014

Matthew Arnold 145 Candidate Number - 7061

 SlopePoints(3) = New Point(Location.X, Location.Y + Size.Height - SlopeY)
 ElseIf SlopeX < 480 Then
 SlopePoints(0) = New Point(Location.X + 480, Location.Y + Size.Height)
 SlopePoints(1) = New Point(Location.X, Location.Y + Size.Height)
 SlopePoints(2) = New Point(Location.X, Location.Y)
 SlopePoints(3) = New Point(Location.X + 480 - SlopeX, Location.Y)
 End If
 Main.GFX.FillPolygon(Brushes.ForestGreen, SlopePoints)
 'WALL
 WallPoints(0) = New Point(Location.X + 480 - (0.2 * SlopeLength - 20) *
Cos(Main.Rad(SlopeAngle)), Location.Y + Size.Height - (0.2 * SlopeLength - 20) *
Sin(Main.Rad(SlopeAngle)))
 WallPoints(1) = New Point(Location.X + 480 - 0.2 * SlopeLength *
Cos(Main.Rad(SlopeAngle)), Location.Y + Size.Height - 0.2 * SlopeLength *
Sin(Main.Rad(SlopeAngle)))
 WallPoints(2) = New Point(WallPoints(1).X + WallHeight * Cos(Main.Rad(90 -
SlopeAngle)), WallPoints(1).Y - WallHeight * Sin(Main.Rad(90 - SlopeAngle)))
 WallPoints(3) = New Point(WallPoints(0).X + WallHeight * Cos(Main.Rad(90 -
SlopeAngle)), WallPoints(0).Y - WallHeight * Sin(Main.Rad(90 - SlopeAngle)))
 Main.GFX.FillPolygon(Brushes.Gray, WallPoints)
 'MASS - 50 pixels along slope
 MassPoints(0) = New Point(WallPoints(1).X - (0.8 * SlopeLength - 60 -
Pixels(Displacement)) * Cos(Main.Rad(SlopeAngle)), WallPoints(1).Y - (0.8 *
SlopeLength - 60 - Pixels(Displacement)) * Sin(Main.Rad(SlopeAngle)))
 MassPoints(1) = New Point(WallPoints(1).X - (0.8 * SlopeLength - 30 -
Pixels(Displacement)) * Cos(Main.Rad(SlopeAngle)), WallPoints(1).Y - (0.8 *
SlopeLength - 30 - Pixels(Displacement)) * Sin(Main.Rad(SlopeAngle)))
 MassPoints(2) = New Point(MassPoints(1).X + 30 * Cos(Main.Rad(90 -
SlopeAngle)), MassPoints(1).Y - 30 * Sin(Main.Rad(90 - SlopeAngle)))
 MassPoints(3) = New Point(MassPoints(0).X + 30 * Cos(Main.Rad(90 -
SlopeAngle)), MassPoints(0).Y - 30 * Sin(Main.Rad(90 - SlopeAngle)))
 Main.GFX.FillPolygon(Brushes.Black, MassPoints)
 End Sub

 Public Sub DrawToCustomImage(ByRef BMP As Image)
 'Used for drawing the simulation when it is used as a preview on the
simulation menu
 Dim SlopePoints(3), WallPoints(3), MassPoints(3) As Point
 'SKY
 Graphics.FromImage(BMP).FillRectangle(Brushes.LightSkyBlue, 0, 0, Size.Width \
2, Size.Height \ 2)
 'SLOPE
 If SlopeX = 480 Then
 SlopePoints(0) = New Point(240, Size.Height / 2)
 SlopePoints(1) = New Point(0, Size.Height / 2)
 SlopePoints(2) = New Point(0, (Size.Height - SlopeY) / 2)
 SlopePoints(3) = New Point(0, (Size.Height - SlopeY) / 2)
 ElseIf SlopeX < 480 Then
 SlopePoints(0) = New Point(240, Size.Height / 2)
 SlopePoints(1) = New Point(0, Size.Height / 2)
 SlopePoints(2) = New Point(0, 0)
 SlopePoints(3) = New Point((480 - SlopeX) / 2, 0)
 End If
 Graphics.FromImage(BMP).FillPolygon(Brushes.ForestGreen, SlopePoints)
 'WALL
 WallPoints(0) = New Point((480 - (0.2 * SlopeLength - 20) *
Cos(Main.Rad(SlopeAngle))) / 2, (Size.Height - (0.2 * SlopeLength - 20) *
Sin(Main.Rad(SlopeAngle))) / 2)
 WallPoints(1) = New Point((480 - 0.2 * SlopeLength *
Cos(Main.Rad(SlopeAngle))) / 2, (Size.Height - 0.2 * SlopeLength *
Sin(Main.Rad(SlopeAngle))) / 2)

Mechanics Simulator 2014

Matthew Arnold 146 Candidate Number - 7061

 WallPoints(2) = New Point(WallPoints(1).X + (WallHeight * Cos(Main.Rad(90 -
SlopeAngle))) / 2, WallPoints(1).Y - (WallHeight * Sin(Main.Rad(90 - SlopeAngle))) /
2)
 WallPoints(3) = New Point(WallPoints(0).X + (WallHeight * Cos(Main.Rad(90 -
SlopeAngle))) / 2, WallPoints(0).Y - (WallHeight * Sin(Main.Rad(90 - SlopeAngle))) /
2)
 Graphics.FromImage(BMP).FillPolygon(Brushes.Gray, WallPoints)
 'MASS - 50 pixels along slope
 MassPoints(0) = New Point(WallPoints(1).X - ((0.8 * SlopeLength - 60 -
Pixels(Displacement)) * Cos(Main.Rad(SlopeAngle))) / 2, WallPoints(1).Y - ((0.8 *
SlopeLength - 60 - Pixels(Displacement)) * Sin(Main.Rad(SlopeAngle))) / 2)
 MassPoints(1) = New Point(WallPoints(1).X - ((0.8 * SlopeLength - 30 -
Pixels(Displacement)) * Cos(Main.Rad(SlopeAngle))) / 2, WallPoints(1).Y - ((0.8 *
SlopeLength - 30 - Pixels(Displacement)) * Sin(Main.Rad(SlopeAngle))) / 2)
 MassPoints(2) = New Point(MassPoints(1).X + (30 * Cos(Main.Rad(90 -
SlopeAngle))) / 2, MassPoints(1).Y - (30 * Sin(Main.Rad(90 - SlopeAngle))) / 2)
 MassPoints(3) = New Point(MassPoints(0).X + (30 * Cos(Main.Rad(90 -
SlopeAngle))) / 2, MassPoints(0).Y - (30 * Sin(Main.Rad(90 - SlopeAngle))) / 2)
 Graphics.FromImage(BMP).FillPolygon(Brushes.Black, MassPoints)
 End Sub
End Class

TestMenu

This screen presents each category of Test. Each Test is a list item in Tests() and each one has a title,

average score, and selection button. These attributes are in the structure TestInfo. When the screen

is loaded, the User’s text file is processed to find the average score for each of their Test categories,

and to see if there are any categories that they haven’t yet completed a Test for.

Imports System.IO

Public Class TestMenu
 Inherits BaseScreen

MainMenuButton : TextButton

SettingsButton : TextButton

RandomTestButton : TextButton

Tests(1).TestButton : TextButton

Tests(1).Title : String

Tests(1).AvgScore : Integer

Mechanics Simulator 2014

Matthew Arnold 147 Candidate Number - 7061

 Private Const TestInfoHeight As Single = 720 * 1 / 7

 Private MainMenuButton As New TextButton(" MAIN" & vbNewLine & "MENU",
Main.Arial_20_Bold, ProgramSection.Test, New Point(845, 10), -1, -1, 3)
 Private SettingsButton As New TextButton("SETTINGS", Main.Arial_20_Bold,
ProgramSection.Test, New Point(675, 25), -1, -1, 3)
 Private RandomTestButton As New TextButton("Test", Main.Arial_12_Bold,
ProgramSection.Test, New Point(704, TestInfoHeight + 36), -1, -1, 3)

 Private Structure TestInfo
 Dim Title As String
 Dim AvgScore As Integer
 Dim TestButton As TextButton
 Dim Location As Point
 Dim Enabled As Boolean
 End Structure

 Private Tests(4) As TestInfo
 Private NumOfTests As Integer = 0

 Public Sub New()
 'Read and decrypt the user's text file
 Dim UserContent As String =
Main.DecryptString(File.ReadAllText(Main.CurrentUser & ".sv"))
 If UserContent.Length > 0 Then
 UserContent = UserContent.Substring(0, UserContent.Length - 1)
 End If

 Name = "TestMenu"
 State = ScreenState.Active
 Location = New Point(0, 0)

 'Set the titles of the tests I want to display
 Tests(0).Title = "Projectile Motion"
 Tests(1).Title = "Resolving Forces"
 Tests(2).Title = "Forces On Slopes"

 'Set up all tests
 For y = 0 To 4
 If Tests(y).Title <> Nothing Then
 Tests(y).Enabled = True
 End If
 Tests(y).Location = New Point(TestInfoHeight, (2 + y) * TestInfoHeight)
 Tests(y).TestButton = New TextButton("Test", Main.Arial_12_Bold,
ProgramSection.Test, New Point(704, Tests(y).Location.Y + 15), -1, -1, 3)
 If Tests(y).Enabled = True Then
 'Get average score from user file. Set to -1 if not yet completed.

 'Process user file to find average score for each category of test.
 If InStr(UserContent, Tests(y).Title) = 0 Then
 'Test title is not found in user file. This means they haven't yet
completed a test of that type yet.
 Tests(y).AvgScore = -1
 Else
 'Split user file content into tests, then look at the right ones
 Dim strTestResults() As String = Split(UserContent, "|")
 Dim TotalScore As Integer = 0
 Dim NumScores As Integer = 0

 'Add up all scores of the category
 For Each strTestResult In strTestResults

Mechanics Simulator 2014

Matthew Arnold 148 Candidate Number - 7061

 If Split(strTestResult, ",")(0) = Tests(y).Title Then
 TotalScore += Split(strTestResult, ",")(1)
 NumScores += 1
 End If
 Next

 'find the average
 Tests(y).AvgScore = TotalScore / NumScores
 End If

 NumOfTests += 1
 End If
 Next
 End Sub

 Public Overrides Sub HandleInput()
 Dim Result As String = ""

 If MainMenuButton.Clicked = "Clicked" Then
 ScreenManager.UnloadScreen(Name)
 ScreenManager.AddScreen(New Title)
 ScreenManager.AddScreen(New SimulationButton)
 ScreenManager.AddScreen(New TestButton)
 ScreenManager.AddScreen(New MyProgressButton)
 End If
 If SettingsButton.Clicked() = "Clicked" Then
 ScreenManager.UnloadScreen(Name)
 ScreenManager.AddScreen(New Settings({New TestMenu}))
 End If

 If RandomTestButton.Clicked = "Clicked" Then
 'Random Test
 Result = Tests(Main.Rand.Next(0, NumOfTests)).Title
 End If
 For y = 0 To 4
 If Tests(y).TestButton.Clicked = "Clicked" And Tests(y).Enabled = True
Then
 'Specific Test
 Result = Tests(y).Title
 End If
 Next
 If Result <> "" Then
 ScreenManager.UnloadScreen(Name)
 Select Case Result
 Case "Projectile Motion"
 ScreenManager.AddScreen(New ProjectileMotionTest)
 Case "Resolving Forces"
 ScreenManager.AddScreen(New ResolvingForcesTest)
 Case "Forces On Slopes"
 ScreenManager.AddScreen(New ForcesOnSlopesTest)
 End Select
 End If

 End Sub

 Public Overrides Sub Draw()
 Dim Output As String = ""

 'MAIN TITLE BAR
 'Title

Mechanics Simulator 2014

Matthew Arnold 149 Candidate Number - 7061

 Main.GFX.DrawString("TEST", Main.Arial_50_Bold, New
SolidBrush(Color.FromArgb(199, 0, 0)), New Point(0, 10))
 'Buttons
 MainMenuButton.Draw()
 SettingsButton.Draw()

 'DIVIDING LINES
 Main.GFX.DrawLine(New Pen(New SolidBrush(Color.FromArgb(199, 0, 0)), 5), 0,
TestInfoHeight, 960, TestInfoHeight)

 'RANDOM TEST
 'Title
 Main.GFX.DrawString("RANDOM", Main.Arial_50_Bold, New
SolidBrush(Color.FromArgb(199, 0, 0)), New Point(2 * TestInfoHeight + 110,
TestInfoHeight + 10))
 'Button
 RandomTestButton.Draw()
 'OTHER TESTS
 For y = 0 To 4
 If Tests(y).Enabled = True Then
 'Line Above
 Main.GFX.DrawLine(New Pen(New SolidBrush(Color.FromArgb(199, 0, 0)),
5), 2 * TestInfoHeight, Tests(y).Location.Y, 960 - 2 * TestInfoHeight,
Tests(y).Location.Y)
 'Title
 Main.GFX.DrawString(Tests(y).Title, Main.Arial_30_Bold, New
SolidBrush(Color.FromArgb(199, 0, 0)), New Point(480 -
Main.GFX.MeasureString(Tests(y).Title, Main.Arial_30_Bold).Width \ 2,
Tests(y).Location.Y + 10))
 'Avg Score
 If Tests(y).AvgScore = -1 Then
 Output = "You have not completed a test for " & Tests(y).Title & "
yet."
 Else
 Output = "Average Score: " & Tests(y).AvgScore & "%"
 End If
 Main.GFX.DrawString(Output, Main.Arial_15, Brushes.Black, New
Point(480 - Main.GFX.MeasureString(Output, Main.Arial_15).Width \ 2,
Tests(y).Location.Y + 65))
 'Button
 Tests(y).TestButton.Draw()
 End If
 Next
 '2dp warning
 Main.GFX.DrawString("In all tests, give answers to no less than two decimal
places.", Main.Arial_20_Bold, New SolidBrush(Color.FromArgb(199, 0, 0)), 480 -
Main.GFX.MeasureString("In all tests, give answers to no less than two decimal
places.", Main.Arial_20_Bold).Width \ 2, 570)
 End Sub
End Class

ProjectileMotionTest

This screen is for testing the User on the Projectile Motion category. The question is presented on

the left. Once the user gives valid answers, the class’s instance of the ProjectileMotionSimulation

starts, using the starting variables randomly generated by this class. Then the class’s instance of

TestReport shows the User’s Test results. A diagram showing my plan for this process for any test

can be found in the design section on page 15.

Mechanics Simulator 2014

Matthew Arnold 150 Candidate Number - 7061

Public Class ProjectileMotionTest
 Inherits BaseScreen

 Private MenuButton As New TextButton("MENU", Main.Arial_20_Bold,
ProgramSection.Test, New Point(822, 50), -1, 35, 3, 1)
 Private SettingsButton As New TextButton("SETTINGS", Main.Arial_20_Bold,
ProgramSection.Test, New Point(792, 10), -1, 35, 3, 1)

 Private AnswerBox1, AnswerBox2, AnswerBox3 As NumberBox
 Private AnswerButton1, AnswerButton2 As TextButton

 Private CorrectFinalAnswer As String = ""
 Private CorrectTimeAnswer As Decimal
 Private BallReachesWall As Boolean
 Private CorrectButton As Boolean

 Private Simulation As New ProjectileMotionSimulation(SimulationMode.Test)
 Private Report As TestReport

 Private twoDPWarning As Boolean = False

 Private WallHeight, WallGap As Integer
 Private XDistance, Speed, Angle As Single

 Public Sub New()
 Dim TempY, TempX, CurrentQNumber As Integer
 Dim HeightAtWall As Single

 Name = "ProjectileMotionTest"

MenuButton : TextButton

SettingsButton : TextButton

AnswerBox3 :

NumberBox

AnswerButton1: TextButton

AnswerButton2 : TextButton

AnswerBox2 :

NumberBox

AnswerBox1 :

NumberBox

Simulation :

ProjectileMotionSimulation

Mechanics Simulator 2014

Matthew Arnold 151 Candidate Number - 7061

 State = ScreenState.Active
 Location = New Point(0, 0)

 'Generate starting variables
 XDistance = Main.Rand.Next(15, 50 + 1)
 WallGap = Main.Rand.Next(3, 5 + 1)
 WallHeight = Main.Rand.Next(WallGap, (XDistance - WallGap) * 0.8 + 1)
 Angle = Main.Rand.Next(20, 60 + 1)
 Speed = Main.Rand.Next(XDistance / 2, XDistance + 1)

 'Plug starting variables into Simulation
 Simulation.SetTestVariables(WallHeight, WallGap, Speed, Angle, XDistance)

 'Calculate correct answers
 CorrectTimeAnswer = Math.Round(XDistance / (Speed *
Math.Cos(Main.Rad(Angle))), 2)
 HeightAtWall = Math.Round(Speed * Math.Sin(Main.Rad(Angle)) *
CorrectTimeAnswer - 4.9 * CorrectTimeAnswer ^ 2, 2)
 If HeightAtWall < 0 Then
 BallReachesWall = False
 CorrectFinalAnswer = "No"
 Else
 BallReachesWall = True
 End If
 If BallReachesWall = True Then
 If HeightAtWall > WallHeight And HeightAtWall < WallHeight + WallGap Then
 CorrectFinalAnswer = "Yes"
 Else
 CorrectFinalAnswer = "No"
 End If
 End If

 CurrentQNumber = 1
 'Create answer boxes in the right places
 TempY = Main.AutoFitText(0, 720 * 1 / 7, 960 * 2 / 7, Main.Arial_15, "A ball
is fired from a cannon at " & Angle & "° to the horizontal at " & Speed & "m/s. A wall
" & XDistance & "m away has a " & WallGap & "m gap " & WallHeight & "m above the
ground.", False)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, CurrentQNumber
& ") Calculate the X and Y components of the initial velocity (m/s). [2]", False)
 CurrentQNumber += 1
 TempX = Main.GFX.MeasureString("X:", Main.Arial_15).Width + 10
 AnswerBox1 = New NumberBox(New Point(TempX, TempY), Main.Arial_15,
ProgramSection.Test, 3, 960 * 2 / 7 - TempX - 14)
 TempY += Main.GFX.MeasureString("X:", Main.Arial_15).Height + 15
 TempX = Main.GFX.MeasureString("Y:", Main.Arial_15).Width + 10
 AnswerBox2 = New NumberBox(New Point(TempX, TempY), Main.Arial_15,
ProgramSection.Test, 3, 960 * 2 / 7 - TempX - 14)
 TempY += Main.GFX.MeasureString("Y:", Main.Arial_15).Height + 15
 If BallReachesWall = True Then
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15,
CurrentQNumber & ") Calculate the time at which the ball will reach the wall (s).
[1]", False)
 CurrentQNumber += 1
 TempX = Main.GFX.MeasureString("t:", Main.Arial_15).Width + 10
 AnswerBox3 = New NumberBox(New Point(TempX, TempY), Main.Arial_15,
ProgramSection.Test, 3, 960 * 2 / 7 - TempX - 14)
 TempY += Main.GFX.MeasureString("t:", Main.Arial_15).Height + 15
 Else
 AnswerBox3 = New NumberBox(New Point(TempX, TempY), Main.Arial_15,
ProgramSection.Test, 3, 960 * 2 / 7 - TempX - 14)

Mechanics Simulator 2014

Matthew Arnold 152 Candidate Number - 7061

 AnswerBox3.Text = "bleh"
 End If
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, CurrentQNumber
& ") Will the ball go through the gap? [3]", False)
 AnswerButton1 = New TextButton("Yes", Main.Arial_15, ProgramSection.Test, New
Point(5, TempY), 960 * 1 / 7 - 15, -1, 3)
 AnswerButton2 = New TextButton("No", Main.Arial_15, ProgramSection.Test, New
Point(960 * 1 / 7 + 5, TempY), 960 * 1 / 7 - 15, -1, 3)
 End Sub

 Public Overrides Sub HandleInput()
 Dim YesClicked As Boolean = False
 Dim NoClicked As Boolean = False

 If MenuButton.Clicked = "Clicked" Then
 ScreenManager.UnloadScreen(Name)
 ScreenManager.AddScreen(New TestMenu)
 End If
 If SettingsButton.Clicked() = "Clicked" Then
 ScreenManager.UnloadScreen(Name)
 ScreenManager.AddScreen(New Settings({New TestMenu}))
 End If

 'Handle answers input
 If Simulation.Finished = False And Simulation.Enabled = False Then
 AnswerBox1.HandleInput()
 AnswerBox2.HandleInput()
 If BallReachesWall = True Then
 AnswerBox3.HandleInput()
 End If
 If AnswerButton1.Clicked() = "Clicked" Then
 YesClicked = True
 End If
 If AnswerButton2.Clicked() = "Clicked" Then
 NoClicked = True
 End If

 If YesClicked = True Or NoClicked = True Then
 If AnswerBox1.CheckFilled And AnswerBox2.CheckFilled And
((BallReachesWall = False) Or (BallReachesWall = True And AnswerBox3.CheckFilled))
Then
 'Other answers have been filled
 If (YesClicked = True And CorrectFinalAnswer = "Yes") Or
(NoClicked = True And CorrectFinalAnswer = "No") Then
 'Correct Button Clicked
 CorrectButton = True
 Else
 'Incorrect Button Clicked
 CorrectButton = False
 End If
 twoDPWarning = False
 'Start Running Simulation
 Simulation.Enabled = True
 Else
 twoDPWarning = True
 End If
 End If
 End If
 End Sub

 Public Overrides Sub Update()

Mechanics Simulator 2014

Matthew Arnold 153 Candidate Number - 7061

 If Simulation.Finished = True And Simulation.Enabled = True Then
 Dim Parts As New List(Of TestQuestionPart)
 Dim TempPart As TestQuestionPart

 Simulation.Enabled = False
 Simulation.Visible = False

 'SCORE ANSWERS AND CREATE REPORT

 'Part 1 - Components of velocity
 TempPart.ScoreOutOf = 2
 TempPart.ScoreAchieved = 0
 TempPart.CorrectAnswer = "X: " & Math.Round(Simulation.FiringV.X, 2) &
"m/s Y: " & Math.Round(Simulation.FiringV.Y, 2) & "m/s"
 If Math.Round(CDbl(AnswerBox1.Text), 2) = Math.Round(Simulation.FiringV.X,
2) Then
 TempPart.ScoreAchieved += 1
 End If
 If Math.Round(CDbl(AnswerBox2.Text), 2) = Math.Round(Simulation.FiringV.Y,
2) Then
 TempPart.ScoreAchieved += 1
 End If
 Parts.Add(TempPart)

 If BallReachesWall = True Then
 'Part 2 - Time at wall
 TempPart.ScoreOutOf = 1
 TempPart.ScoreAchieved = 0
 TempPart.CorrectAnswer = "t: " & CorrectTimeAnswer & "s"
 If Math.Round(CDbl(AnswerBox3.Text), 2) = CorrectTimeAnswer Then
 TempPart.ScoreAchieved = 1
 End If
 Parts.Add(TempPart)
 End If

 'Part 3 - Buttons
 TempPart.ScoreOutOf = 3
 TempPart.ScoreAchieved = 0
 TempPart.CorrectAnswer = CorrectFinalAnswer
 If CorrectButton = True Then
 TempPart.ScoreAchieved = 3
 End If
 Parts.Add(TempPart)

 Report = New TestReport("Projectile Motion", Parts)
 End If

 Simulation.Update()
 If Simulation.Finished = True And Simulation.Enabled = False Then
 Report.Update()
 End If
 End Sub

 Public Overrides Sub Draw()
 Dim TempY, CurrentQNumber As Integer

 'MAIN TITLE BAR
 'Title
 Main.GFX.DrawString("Projectile Motion", Main.Arial_30_Bold, New
SolidBrush(Color.FromArgb(199, 0, 0)), New Point(261 -
Main.GFX.MeasureString("Projectile Motion", Main.Arial_30_Bold).Width \ 2, 25))

Mechanics Simulator 2014

Matthew Arnold 154 Candidate Number - 7061

 Main.GFX.DrawString("TEST", Main.Arial_50_Bold, New
SolidBrush(Color.FromArgb(199, 0, 0)), New Point(522, 10))
 If twoDPWarning Then
 If Now.Millisecond < 800 Then
 Main.GFX.DrawString("All numerical answers must be given to at least
two decimal places.", Main.Arial_10, Brushes.Blue, 960 * 2 / 7, 720 / 7 - 20)
 End If

 Else
 Main.GFX.DrawString("All numerical answers must be given to at least two
decimal places.", Main.Arial_10, New SolidBrush(Color.FromArgb(199, 0, 0)), 960 * 2 /
7, 720 / 7 - 20)
 End If
 'Buttons
 MenuButton.Draw()
 SettingsButton.Draw()

 'DIVIDING LINES
 Main.GFX.DrawLine(New Pen(New SolidBrush(Color.FromArgb(199, 0, 0)), 5), New
Point(960 * 2 / 7, 720 * 1 / 7), New Point(960, 720 * 1 / 7))
 Main.GFX.DrawLine(New Pen(New SolidBrush(Color.FromArgb(199, 0, 0)), 5), New
Point(960 * 2 / 7, 720 * 1 / 7 - 2), New Point(960 * 2 / 7, 720))

 'SIMULATION OR REPORT
 If Simulation.Visible = True Then
 Simulation.Draw()
 Else
 Report.Draw()
 End If

 'QUESTION
 CurrentQNumber = 1
 TempY = Main.AutoFitText(0, 720 * 1 / 7, 960 * 2 / 7, Main.Arial_15, "A ball
is fired from a cannon at " & Angle & "° to the horizontal at " & Speed & "m/s. A wall
" & XDistance & "m away has a " & WallGap & "m gap " & WallHeight & "m above the
ground.")
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, CurrentQNumber
& ") Calculate the X and Y components of the initial velocity (m/s). [2]")
 CurrentQNumber += 1
 Main.GFX.DrawString("X:", Main.Arial_15, Brushes.Black, 0, TempY)
 AnswerBox1.Draw()
 TempY += Main.GFX.MeasureString("X:", Main.Arial_15).Height + 15
 Main.GFX.DrawString("Y:", Main.Arial_15, Brushes.Black, 0, TempY)
 AnswerBox2.Draw()
 If BallReachesWall = True Then
 TempY += Main.GFX.MeasureString("Y:", Main.Arial_15).Height + 15
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15,
CurrentQNumber & ") Calculate the time at which the ball will reach the wall (s).
[1]")
 CurrentQNumber += 1
 Main.GFX.DrawString("t:", Main.Arial_15, Brushes.Black, 0, TempY)
 AnswerBox3.Draw()
 End If
 TempY += Main.GFX.MeasureString("t:", Main.Arial_15).Height + 15
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, CurrentQNumber
& ") Will the ball go through the gap? [3]")
 AnswerButton1.Draw()
 AnswerButton2.Draw()

 'MAIN RECT: 277, 106, 683, 614
 End Sub

Mechanics Simulator 2014

Matthew Arnold 155 Candidate Number - 7061

End Class

ResolvingForcesTest

This screen is for testing the User on the Resolving Forces category. The question is presented on the

left. Once the user gives valid answers, the class’s instance of the ResolvingForcesSimulation starts,

using the starting variables randomly generated by this class. Then the class’s instance of TestReport

shows the User’s Test results. A diagram showing my plan for this process for any test can be found

in the design section on page 15.

Imports System.Math

Public Class ResolvingForcesTest
 Inherits BaseScreen

 Private MenuButton As New TextButton("MENU", Main.Arial_20_Bold,
ProgramSection.Test, New Point(822, 50), -1, 35, 3, 1)
 Private SettingsButton As New TextButton("SETTINGS", Main.Arial_20_Bold,
ProgramSection.Test, New Point(792, 10), -1, 35, 3, 1)

 Private AnswerBox1, AnswerBox2, AnswerBox3 As NumberBox
 Private MarkButton As TextButton

 Private CorrectTimeAnswer As Decimal

 Private Simulation As New ResolvingForcesSimulation(SimulationMode.Test)
 Private Report As TestReport

MenuButton : TextButton

SettingsButton : TextButton

AnswerBox3 :

NumberBox

MarkButton : TextButton

AnswerBox2 :

NumberBox

AnswerBox1 :

NumberBox

Simulation :

ResolvingForcesSimulation

Mechanics Simulator 2014

Matthew Arnold 156 Candidate Number - 7061

 Private twoDPWarning As Boolean = False

 Private m1Mass, m2Mass, Friction, xDist As Single

 Public Sub New()
 Dim TempY, TempX As Integer

 Name = "ResolvingForcesTest"
 State = ScreenState.Active
 Location = New Point(0, 0)

 'Generate starting variables
 xDist = Main.Rand.Next(1, 20 + 1) / 2
 m1Mass = Main.Rand.Next(1, 15 + 1)
 m2Mass = Main.Rand.Next(1, 15 + 1)
 Friction = Main.Rand.Next(5, m2Mass * Simulation.g)

 'Plug starting variables into Simulation
 Simulation.SetTestVariables(m1Mass, m2Mass, Friction, xDist)

 'Calculate correct answers
 CorrectTimeAnswer = Round(Sqrt(2 * Simulation.yDist /
Simulation.Acceleration), 2)

 'Create answer boxes in the right places
 TempY = Main.AutoFitText(0, 720 * 1 / 7, 960 * 2 / 7, Main.Arial_15, "Two
masses are connected by a light, inextensible string over a smooth pulley. m1 has a
mass of " & m1Mass & "kg and is on a horizontal surface with constant friction of " &
Friction & "N. m2 has a mass of " & m2Mass & "kg and is " & xDist * 0.8 & "m above the
ground. The system is released from rest.", False)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "1) Calculate
the tension in the string (N). [2]", False)
 TempX = Main.GFX.MeasureString("T:", Main.Arial_15).Width + 10
 AnswerBox1 = New NumberBox(New Point(TempX, TempY), Main.Arial_15,
ProgramSection.Test, 3, 960 * 2 / 7 - TempX - 14)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "T:", False)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "2) Calculate
the acceleration of the system (m/s²). [2]", False)
 TempX = Main.GFX.MeasureString("a:", Main.Arial_15).Width + 10
 AnswerBox2 = New NumberBox(New Point(TempX, TempY), Main.Arial_15,
ProgramSection.Test, 3, 960 * 2 / 7 - TempX - 14)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "a:", False)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "3) Calculate
the time taken for m2 to reach the ground (s). [2]", False)
 TempX = Main.GFX.MeasureString("t:", Main.Arial_15).Width + 10
 AnswerBox3 = New NumberBox(New Point(TempX, TempY), Main.Arial_15,
ProgramSection.Test, 3, 960 * 2 / 7 - TempX - 14)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "t:", False)
 TempY += Main.GFX.MeasureString("t:", Main.Arial_15).Height \ 2
 MarkButton = New TextButton("Mark", Main.Arial_15, ProgramSection.Test, New
Point(960 / 7 - Main.GFX.MeasureString("Mark", Main.Arial_15).Width \ 2, TempY), -1, -
1, 3)
 End Sub

 Public Overrides Sub HandleInput()
 If MenuButton.Clicked = "Clicked" Then
 ScreenManager.UnloadScreen(Name)
 ScreenManager.AddScreen(New TestMenu)
 End If
 If SettingsButton.Clicked() = "Clicked" Then
 ScreenManager.UnloadScreen(Name)

Mechanics Simulator 2014

Matthew Arnold 157 Candidate Number - 7061

 ScreenManager.AddScreen(New Settings({New TestMenu}))
 End If

 'Handle answers input
 If Simulation.Finished = False And Simulation.Enabled = False Then
 AnswerBox1.HandleInput()
 AnswerBox2.HandleInput()
 AnswerBox3.HandleInput()

 If MarkButton.Clicked = "Clicked" Then
 If AnswerBox1.CheckFilled And AnswerBox2.CheckFilled And
AnswerBox3.CheckFilled Then
 'Other answers have been filled
 twoDPWarning = False

 'Start Running Simulation
 Simulation.Enabled = True
 Else
 twoDPWarning = True
 End If
 End If
 End If
 End Sub

 Public Overrides Sub Update()
 If Simulation.Finished = True And Simulation.Enabled = True Then
 Dim Parts As New List(Of TestQuestionPart)
 Dim TempPart As TestQuestionPart

 Simulation.Enabled = False
 Simulation.Visible = False

 'SCORE ANSWERS AND CREATE REPORT
 'Part 1 - Calculating Tension
 TempPart.ScoreOutOf = 2
 TempPart.CorrectAnswer = "T: " & Round(Simulation.Tension, 2) & "N"
 If Round(CDbl(AnswerBox1.Text), 2) = Round(Simulation.Tension, 2) Then
 TempPart.ScoreAchieved = 2
 Else
 TempPart.ScoreAchieved = 0
 End If
 Parts.Add(TempPart)

 'Part 2 - Calculating Acceleration
 TempPart.ScoreOutOf = 2
 TempPart.CorrectAnswer = "a: " & Round((Simulation.Tension -
Simulation.Friction) / m1Mass, 2) & "m/s²"
 If Round(CDbl(AnswerBox2.Text), 2) = Round((Simulation.Tension -
Simulation.Friction) / m1Mass, 2) Then
 TempPart.ScoreAchieved = 2
 Else
 TempPart.ScoreAchieved = 0
 End If
 Parts.Add(TempPart)

 'Part 3 - Calculating Time
 TempPart.ScoreOutOf = 2
 TempPart.CorrectAnswer = "t: " & CorrectTimeAnswer & "s"
 If Round(CDbl(AnswerBox3.Text), 2) = CorrectTimeAnswer Then
 TempPart.ScoreAchieved = 2
 Else

Mechanics Simulator 2014

Matthew Arnold 158 Candidate Number - 7061

 TempPart.ScoreAchieved = 0
 End If
 Parts.Add(TempPart)

 Report = New TestReport("Resolving Forces", Parts)
 End If

 Simulation.Update()

 If Simulation.Finished = True And Simulation.Enabled = False Then
 Report.Update()
 End If
 End Sub

 Public Overrides Sub Draw()
 Dim TempY As Integer

 'MAIN TITLE BAR
 'Title
 Main.GFX.DrawString("Resolving Forces", Main.Arial_30_Bold, New
SolidBrush(Color.FromArgb(199, 0, 0)), New Point(261 -
Main.GFX.MeasureString("Resolving Forces", Main.Arial_30_Bold).Width \ 2, 25))
 Main.GFX.DrawString("TEST", Main.Arial_50_Bold, New
SolidBrush(Color.FromArgb(199, 0, 0)), New Point(522, 10))
 If twoDPWarning Then
 If Now.Millisecond < 800 Then
 Main.GFX.DrawString("All numerical answers must be given to at least
two decimal places.", Main.Arial_10, Brushes.Blue, 960 * 2 / 7, 720 / 7 - 20)
 End If

 Else
 Main.GFX.DrawString("All numerical answers must be given to at least two
decimal places.", Main.Arial_10, New SolidBrush(Color.FromArgb(199, 0, 0)), 960 * 2 /
7, 720 / 7 - 20)
 End If
 'Buttons
 MenuButton.Draw()
 SettingsButton.Draw()

 'DIVIDING LINES
 Main.GFX.DrawLine(New Pen(New SolidBrush(Color.FromArgb(199, 0, 0)), 5), New
Point(960 * 2 / 7, 720 * 1 / 7), New Point(960, 720 * 1 / 7))
 Main.GFX.DrawLine(New Pen(New SolidBrush(Color.FromArgb(199, 0, 0)), 5), New
Point(960 * 2 / 7, 720 * 1 / 7 - 2), New Point(960 * 2 / 7, 720))

 'SIMULATION OR REPORT
 If Simulation.Visible = True Then
 Simulation.Draw()
 Else
 Report.Draw()
 End If

 'QUESTION
 TempY = Main.AutoFitText(0, 720 * 1 / 7, 960 * 2 / 7, Main.Arial_15, "Two
masses are connected by a light, inextensible string over a smooth pulley. m1 has a
mass of " & m1Mass & "kg and is on a horizontal surface with constant friction of " &
Friction & "N. m2 has a mass of " & m2Mass & "kg and is " & xDist * 0.8 & "m above the
ground. The system is released from rest.")
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "1) Calculate
the tension in the string (N). [2]")
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "T:")

Mechanics Simulator 2014

Matthew Arnold 159 Candidate Number - 7061

 AnswerBox1.Draw()
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "2) Calculate
the acceleration of the system (m/s²). [2]")
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "a:")
 AnswerBox2.Draw()
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "3) Calculate
the time taken for m2 to reach the ground (s). [2]")
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "t:")
 AnswerBox3.Draw()
 MarkButton.Draw()
 'MAIN RECT: 277, 106, 683, 614
 End Sub
End Class

ForcesOnSlopesTest

This screen is for testing the User on the Forces On Slopes category. The question is presented on

the left. Once the user gives valid answers, the class’s instance of the ForcesOnSlopesSimulation

starts, using the starting variables randomly generated by this class. Then the class’s instance of

TestReport shows the User’s Test results. A diagram showing my plan for this process for any test

can be found in the design section on page 15.

Imports System.Math

Public Class ForcesOnSlopesTest
 Inherits BaseScreen

MenuButton : TextButton

SettingsButton : TextButton

AnswerBox3 :

NumberBox

MarkButton : TextButton

AnswerBox2 :

NumberBox

AnswerBox1 :

NumberBox

Simulation :

ForcesOnSlopesSimulation

Mechanics Simulator 2014

Matthew Arnold 160 Candidate Number - 7061

 Private MenuButton As New TextButton("MENU", Main.Arial_20_Bold,
ProgramSection.Test, New Point(822, 50), -1, 35, 3, 1)
 Private SettingsButton As New TextButton("SETTINGS", Main.Arial_20_Bold,
ProgramSection.Test, New Point(792, 10), -1, 35, 3, 1)

 Private AnswerBox1, AnswerBox2, AnswerBox3 As NumberBox
 Private MarkButton As TextButton

 Private CorrectTimeAnswer As Decimal

 Private Simulation As New ForcesOnSlopesSimulation(SimulationMode.Test)
 Private Report As TestReport

 Private twoDPWarning As Boolean = False

 Private Mass, DistanceToWall, Friction, SlopeAngle As Single

 Public Sub New()
 Dim TempY, TempX As Integer

 Name = "ForcesOnSlopesTest"
 State = ScreenState.Active
 Location = New Point(0, 0)

 'Generate starting variables
 Mass = 20 'Main.Rand.Next(5, 30 + 1)
 DistanceToWall = 6.6 'Main.Rand.Next(1, 100 + 1) / 10
 SlopeAngle = 46 'Main.Rand.Next(15, 70 + 1)
 Friction = 71 'Main.Rand.Next(0, 2 * Mass * Simulation.g *
Sin(Main.Rad(SlopeAngle))) / 2

 'Plug starting variables into Simulation
 Simulation.SetTestVariables(Mass, DistanceToWall, Friction, SlopeAngle)

 'Calculate correct answers
 CorrectTimeAnswer = Round(Sqrt(2 * DistanceToWall / Simulation.Acceleration),
2)

 'Create answer boxes in the right places
 TempY = Main.AutoFitText(0, 720 * 1 / 7, 960 * 2 / 7, Main.Arial_15, "A block
of mass " & Mass & "kg is released from rest on a slope at an angle of " & SlopeAngle
& "° to the horizontal, with a constant friction of " & Friction & "N. A wall
perpendicular to the slope is " & DistanceToWall & "m away from the block.", False)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "1) Calculate
the normal reaction force on the block (N). [1]", False)
 TempX = Main.GFX.MeasureString("R:", Main.Arial_15).Width + 10
 AnswerBox1 = New NumberBox(New Point(TempX, TempY), Main.Arial_15,
ProgramSection.Test, 3, 960 * 2 / 7 - TempX - 14)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "T:", False)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "2) Calculate
the acceleration of the block (m/s²). [2]", False)
 TempX = Main.GFX.MeasureString("a:", Main.Arial_15).Width + 10
 AnswerBox2 = New NumberBox(New Point(TempX, TempY), Main.Arial_15,
ProgramSection.Test, 3, 960 * 2 / 7 - TempX - 14)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "a:", False)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "3) Calculate
the time taken for the mass to hit the wall (s). [2]", False)
 TempX = Main.GFX.MeasureString("t:", Main.Arial_15).Width + 10
 AnswerBox3 = New NumberBox(New Point(TempX, TempY), Main.Arial_15,
ProgramSection.Test, 3, 960 * 2 / 7 - TempX - 14)
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "t:", False)

Mechanics Simulator 2014

Matthew Arnold 161 Candidate Number - 7061

 TempY += Main.GFX.MeasureString("t:", Main.Arial_15).Height \ 2
 MarkButton = New TextButton("Mark", Main.Arial_15, ProgramSection.Test, New
Point(960 / 7 - Main.GFX.MeasureString("Mark", Main.Arial_15).Width \ 2, TempY), -1, -
1, 3)
 End Sub

 Public Overrides Sub HandleInput()
 If MenuButton.Clicked = "Clicked" Then
 ScreenManager.UnloadScreen(Name)
 ScreenManager.AddScreen(New TestMenu)
 End If
 If SettingsButton.Clicked() = "Clicked" Then
 ScreenManager.UnloadScreen(Name)
 ScreenManager.AddScreen(New Settings({New TestMenu}))
 End If

 'Handle answers input
 If Simulation.Finished = False And Simulation.Enabled = False Then
 AnswerBox1.HandleInput()
 AnswerBox2.HandleInput()
 AnswerBox3.HandleInput()

 If MarkButton.Clicked = "Clicked" Then
 If AnswerBox1.CheckFilled And AnswerBox2.CheckFilled And
AnswerBox3.CheckFilled Then
 'Other answers have been filled
 twoDPWarning = False

 'Start Running Simulation
 Simulation.Enabled = True
 Else
 twoDPWarning = True
 End If
 End If
 End If
 End Sub

 Public Overrides Sub Update()
 If Simulation.Finished = True And Simulation.Enabled = True Then
 Dim Parts As New List(Of TestQuestionPart)
 Dim TempPart As TestQuestionPart

 Simulation.Enabled = False
 Simulation.Visible = False

 'SCORE ANSWERS AND CREATE REPORT
 'Part 1 - Calculating the normal reaction
 TempPart.ScoreOutOf = 1
 TempPart.CorrectAnswer = "R: " & Round(Simulation.Mass * Simulation.g *
Cos(Main.Rad(Simulation.SlopeAngle)), 2) & "N"
 If Round(CDbl(AnswerBox1.Text), 2) = Round(Simulation.Mass * Simulation.g
* Cos(Main.Rad(Simulation.SlopeAngle)), 2) Then
 TempPart.ScoreAchieved = 1
 Else
 TempPart.ScoreAchieved = 0
 End If
 Parts.Add(TempPart)

 'Part 2 - Calculating the acceleration
 TempPart.ScoreOutOf = 2

Mechanics Simulator 2014

Matthew Arnold 162 Candidate Number - 7061

 TempPart.CorrectAnswer = "a: " & Round((Simulation.Mass * Simulation.g *
Sin(Main.Rad(Simulation.SlopeAngle)) - Simulation.Friction) / Simulation.Mass, 2) &
"m/s²"
 If Round(CDbl(AnswerBox2.Text), 2) = Round((Simulation.Mass * Simulation.g
* Sin(Main.Rad(Simulation.SlopeAngle)) - Simulation.Friction) / Simulation.Mass, 2)
Then
 TempPart.ScoreAchieved = 2
 Else
 TempPart.ScoreAchieved = 0
 End If
 Parts.Add(TempPart)

 'Part 3 - Calculating the time for the mass to reach the wall
 TempPart.ScoreOutOf = 2
 TempPart.CorrectAnswer = "t: " & CorrectTimeAnswer & "s"
 If Round(CDbl(AnswerBox3.Text), 2) = CorrectTimeAnswer Then
 TempPart.ScoreAchieved = 2
 Else
 TempPart.ScoreAchieved = 0
 End If
 Parts.Add(TempPart)

 Report = New TestReport("Forces On Slopes", Parts)
 End If

 Simulation.Update()

 If Simulation.Finished = True And Simulation.Enabled = False Then
 Report.Update()
 End If
 End Sub

 Public Overrides Sub Draw()
 Dim TempY As Integer

 'MAIN TITLE BAR
 'Title
 Main.GFX.DrawString("Forces On Slopes", Main.Arial_30_Bold, New
SolidBrush(Color.FromArgb(199, 0, 0)), New Point(261 - Main.GFX.MeasureString("Forces
On Slopes", Main.Arial_30_Bold).Width \ 2, 25))
 Main.GFX.DrawString("TEST", Main.Arial_50_Bold, New
SolidBrush(Color.FromArgb(199, 0, 0)), New Point(522, 10))
 If twoDPWarning Then
 If Now.Millisecond < 800 Then
 Main.GFX.DrawString("All numerical answers must be given to at least
two decimal places.", Main.Arial_10, Brushes.Blue, 960 * 2 / 7, 720 / 7 - 20)
 End If

 Else
 Main.GFX.DrawString("All numerical answers must be given to at least two
decimal places.", Main.Arial_10, New SolidBrush(Color.FromArgb(199, 0, 0)), 960 * 2 /
7, 720 / 7 - 20)
 End If
 'Buttons
 MenuButton.Draw()
 SettingsButton.Draw()

 'DIVIDING LINES
 Main.GFX.DrawLine(New Pen(New SolidBrush(Color.FromArgb(199, 0, 0)), 5), New
Point(960 * 2 / 7, 720 * 1 / 7), New Point(960, 720 * 1 / 7))

Mechanics Simulator 2014

Matthew Arnold 163 Candidate Number - 7061

 Main.GFX.DrawLine(New Pen(New SolidBrush(Color.FromArgb(199, 0, 0)), 5), New
Point(960 * 2 / 7, 720 * 1 / 7 - 2), New Point(960 * 2 / 7, 720))

 'SIMULATION OR REPORT
 If Simulation.Visible = True Then
 Simulation.Draw()
 Else
 Report.Draw()
 End If

 'QUESTION
 TempY = Main.AutoFitText(0, 720 * 1 / 7, 960 * 2 / 7, Main.Arial_15, "A block
of mass " & Mass & "kg is released from rest on a slope at an angle of " & SlopeAngle
& "° to the horizontal, with a constant friction of " & Friction & "N. A wall
perpendicular to the slope is " & DistanceToWall & "m away from the block.")
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "1) Calculate
the normal reaction force on the block (N). [1]")
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "R:")
 AnswerBox1.Draw()
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "2) Calculate
the acceleration of the block (m/s²). [2]")
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "a:")
 AnswerBox2.Draw()
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "3) Calculate
the time taken for the mass to hit the wall (s). [2]")
 TempY = Main.AutoFitText(0, TempY, 960 * 2 / 7, Main.Arial_15, "t:")
 AnswerBox3.Draw()
 MarkButton.Draw()
 'MAIN RECT: 277, 106, 683, 614
 End Sub
End Class

TestReport

This object replaces the Simulation in each Test after the Simulation has finished running. It shows

how well the User performed in the Test, including the correct answers for each question. It also

decrypts the User’s text file, appends their latest Test data, and encrypts it again. The DrawRow

function is for easily creating the lines of text in the image below where one half is one colour and

the other half is another.

AnotherTestButton : TextButton

CompletionDate : Date

Parts(2).CorrectAnswer : String

Parts(1).ScoreAchieved : Integer

Parts(0).ScoreOutOf : Integer

Mechanics Simulator 2014

Matthew Arnold 164 Candidate Number - 7061

Imports System.IO

Public Structure TestQuestionPart
 Dim ScoreAchieved, ScoreOutOf As Integer
 Dim CorrectAnswer As String
End Structure

Public Class TestReport
 Inherits BaseScreen

 Private Size As New Size(683, 614)

 Private AnotherTestButton As TextButton

 Private CompletionDate As Date
 Private Parts As New List(Of TestQuestionPart)
 Private TotalAchieved, TotalOutOf As Integer

 Public Sub New(ByVal InputTestName As String, ByVal InputParts As List(Of
TestQuestionPart))
 Name = InputTestName
 Location = New Point(277, 106)

 CompletionDate = Now
 Parts = InputParts

 'Calculate total score
 For i = 0 To Parts.Count - 1
 TotalAchieved += Parts(i).ScoreAchieved
 TotalOutOf += Parts(i).ScoreOutOf
 Next

 AnotherTestButton = New TextButton("Take another" & vbNewLine & Name &
vbNewLine & "Test", Main.Arial_15, ProgramSection.Test, New Point(Location.X +
Size.Width \ 2 - Main.GFX.MeasureString(Name, Main.Arial_15).Width \ 2, Location.Y +
Size.Height * 1 / 7 + Main.GFX.MeasureString("Hello", Main.Arial_15).Height * (5 + 3 *
Parts.Count)), -1, -1, 3)

 'ADD TEST RESULT TO USER FILE
 File.WriteAllText(Main.CurrentUser & ".sv",
Main.EncryptString(Main.DecryptString(File.ReadAllText(Main.CurrentUser & ".sv")) &
Name & "," & Math.Round(TotalAchieved / TotalOutOf * 100) & "," & CompletionDate &
"|"))
 End Sub

 Public Overrides Sub Update()
 If AnotherTestButton.Clicked() = "Clicked" Then
 Select Case Name
 Case "Projectile Motion"
 ScreenManager.UnloadScreen("ProjectileMotionTest")
 ScreenManager.AddScreen(New ProjectileMotionTest)
 Case "Resolving Forces"
 ScreenManager.UnloadScreen("ResolvingForcesTest")
 ScreenManager.AddScreen(New ResolvingForcesTest)
 Case "Forces On Slopes"
 ScreenManager.UnloadScreen("ForcesOnSlopesTest")
 ScreenManager.AddScreen(New ForcesOnSlopesTest)
 End Select
 End If

Mechanics Simulator 2014

Matthew Arnold 165 Candidate Number - 7061

 End Sub

 Private Function DrawRow(ByVal String1 As String, String2 As String, TempY As
Integer)
 'Draw one line of text where two parts are of different colours
 Dim StringLength1 As Integer = Main.GFX.MeasureString(String1,
Main.Arial_15).Width
 Dim StringLength2 As Integer = Main.GFX.MeasureString(String2,
Main.Arial_15).Width

 Main.GFX.DrawString(String1, Main.Arial_15, Brushes.Black, Location.X +
Size.Width \ 2 - (StringLength1 + StringLength2) \ 2, TempY)
 Main.GFX.DrawString(String2, Main.Arial_15, New SolidBrush(Color.FromArgb(199,
0, 0)), Location.X + Size.Width \ 2 - (StringLength1 + StringLength2) \ 2 +
StringLength1, TempY)

 Return Main.GFX.MeasureString(String1 & String2, Main.Arial_15_Bold).Height
 End Function
 Public Overrides Sub Draw()
 Dim TempY As Integer

 'USER NAME
 Main.GFX.DrawString("User: ", Main.Arial_10, Brushes.Black, Location)
 Main.GFX.DrawString(Main.CurrentUser, Main.Arial_10, New
SolidBrush(Color.FromArgb(199, 0, 0)), New Point(Location.X +
Main.GFX.MeasureString("User: ", Main.Arial_10).Width, Location.Y))
 'TITLE
 TempY = Location.Y + Size.Height * 1 / 7
 Main.GFX.DrawString(Name & " Test Report", Main.Arial_20_Bold, New
SolidBrush(Color.FromArgb(199, 0, 0)), Location.X + Size.Width \ 2 -
Main.GFX.MeasureString(Name & " Test Report", Main.Arial_20_Bold).Width \ 2, TempY)
 TempY += Main.GFX.MeasureString(Name & " Test Report",
Main.Arial_20_Bold).Height
 'PARTS
 For i = 0 To Parts.Count - 1
 TempY += DrawRow("Part " & i + 1 & ": ", Parts(i).ScoreAchieved & "/" &
Parts(i).ScoreOutOf, TempY)
 TempY += DrawRow("Correct Answer: ", Parts(i).CorrectAnswer, TempY)
 TempY += DrawRow(" ", " ", TempY)
 Next
 'TOTAL
 TempY += DrawRow("Total: ", TotalAchieved & "/" & TotalOutOf & " (" &
Math.Round(TotalAchieved / TotalOutOf * 100) & "%)", TempY)
 'DATE AND TIME
 TempY += DrawRow("Date: ", CompletionDate.Date, TempY)

 If CompletionDate.Minute < 10 Then
 TempY += DrawRow("Time: ", CompletionDate.Hour & ":0" &
CompletionDate.Minute, TempY)
 Else
 TempY += DrawRow("Time: ", CompletionDate.Hour & ":" &
CompletionDate.Minute, TempY)
 End If
 'BUTTONS
 AnotherTestButton.Draw()
 End Sub
End Class

Mechanics Simulator 2014

Matthew Arnold 166 Candidate Number - 7061

MyProgressReport

This screen is for the User to see how they are performing on Tests. It reads their text file and

processes it to find useful information, such as their best and worst categories. The top half of the

screen shows overall statistics and the bottom half shows a graph with Test score against Test

number for specific categories. A diagram of my plan for this process can be found in the design

section on page 16.

Imports System.IO

Public Class MyProgressReport
 Inherits BaseScreen

 Public Structure TestReportInfo
 Dim Category As String
 Dim Score As Integer
 Dim CompletionDate As Date
 End Structure

 Private TestReports As New List(Of TestReportInfo)
 Private AverageScore As Integer
 Private FirstTestDate, RecentTestDate As Date
 Private BestCategoryName, WorstCategoryName As String

 Private MainMenuButton As New TextButton(" MAIN" & vbNewLine & "MENU",
Main.Arial_20_Bold, ProgramSection.MyProgress, New Point(845, 10), -1, -1, 3)
 Private SettingsButton As New TextButton("SETTINGS", Main.Arial_20_Bold,
ProgramSection.MyProgress, New Point(675, 25), -1, -1, 3)

 Private GraphButtons As New List(Of TextButton)
 Private GraphPoints() As Point

SettingsButton : TextButton

MainMenuButton : TextButton

GraphButtons : List(Of TextButton)

AverageScore : Integer

FirstTestDate : Date

RecentTestDate : Date

BestCategoryName :

String

WorstCategoryName :

String

Mechanics Simulator 2014

Matthew Arnold 167 Candidate Number - 7061

 Private CurrentCategory As String

 Public Sub New()
 Dim TestMsgBox As String = ""

 'Get the current users raw file, and decrypt it
 Dim UserContent As String =
Main.DecryptString(File.ReadAllText(Main.CurrentUser & ".sv"))

 If UserContent.Length > 0 Then
 'Remove the '|' symbol from the end
 UserContent = UserContent.Substring(0, UserContent.Length - 1)
 End If
 'Split the raw data string into separate reports
 Dim strTestReports() As String = Split(UserContent, "|")
 Dim TempTestReport As TestReportInfo
 Dim TotalScore As Integer
 Dim BestCategory, WorstCategory As Integer
 Dim CategoriesWithData As New List(Of String)
 Dim TempGraphButton As TextButton

 Name = "MyProgressReport"
 Location = New Point(0, 0)
 State = ScreenState.Active

 If UserContent.Length > 0 Then
 FirstTestDate = Split(strTestReports(0), ",")(2)
 RecentTestDate = FirstTestDate

 For Each strTestReport In strTestReports
 'Split each report into the three fields.
 '0: Category
 '1: Score
 '2: Completion Date
 TempTestReport.Category = Split(strTestReport, ",")(0)
 TempTestReport.Score = Split(strTestReport, ",")(1)
 'Add up all of the scores.
 TotalScore += TempTestReport.Score
 TempTestReport.CompletionDate = Split(strTestReport, ",")(2)
 If TempTestReport.CompletionDate < FirstTestDate Then
 FirstTestDate = TempTestReport.CompletionDate
 End If
 If TempTestReport.CompletionDate > RecentTestDate Then
 RecentTestDate = TempTestReport.CompletionDate
 End If
 TestReports.Add(TempTestReport)
 Next

 'Calculate the average score
 AverageScore = TotalScore / TestReports.Count

 'Find the Best and Worst categories using the GetAverageScore() function
 BestCategory = GetAverageScore(TestReports(0).Category)
 WorstCategory = BestCategory
 BestCategoryName = TestReports(0).Category
 WorstCategoryName = BestCategoryName

 For Each TestReport In TestReports
 If Not CategoriesWithData.Contains(TestReport.Category) Then
 If GetAverageScore(TestReport.Category) > BestCategory Then
 BestCategory = GetAverageScore(TestReport.Category)

Mechanics Simulator 2014

Matthew Arnold 168 Candidate Number - 7061

 BestCategoryName = TestReport.Category
 End If
 If GetAverageScore(TestReport.Category) < WorstCategory Then
 WorstCategory = GetAverageScore(TestReport.Category)
 WorstCategoryName = TestReport.Category
 End If

 'This is so the program only makes graph buttons for
 'categories with tests completed
 CategoriesWithData.Add(TestReport.Category)
 End If
 Next

 CurrentCategory = TestReports(0).Category
 SetGraphPoints(CurrentCategory)
 End If

 'Add graph buttons only for categories with data
 For i = 0 To CategoriesWithData.Count - 1
 TempGraphButton = New TextButton(CategoriesWithData(i), Main.Arial_10,
ProgramSection.MyProgress, New Point(40, 405 + i * 35), -1, -1, 3)
 GraphButtons.Add(TempGraphButton)
 Next
 End Sub

 Private Function GetAverageScore(ByVal Category As String) As Integer
 'Find the average score for all tests with a specified category
 Dim TotalScore As Integer = 0
 Dim NumTests As Integer = 0

 For Each TestReport In TestReports
 If TestReport.Category = Category Then
 TotalScore += TestReport.Score
 NumTests += 1
 End If
 Next

 'Return the average score as a percentage to the nearest integer
 Return Math.Round(TotalScore / NumTests)
 End Function

 Private Sub SetGraphPoints(ByVal Category As String)
 'Set the x and y coordiantes for the data points on the graph for
 'tests with a specified category
 Dim NumPoints As Integer = 0
 Dim XDistance As Integer = 0
 Dim RelevantReports As New List(Of TestReportInfo)

 'Generate a list of all of the reports with the correct category
 For Each Report In TestReports
 If Report.Category = Category Then
 RelevantReports.Add(Report)
 NumPoints += 1
 End If
 Next

 'XDistance is the number of horizontal pixels between each point
 'As there are more points, XDistance decreases
 If NumPoints > 1 Then
 XDistance = 650 / (NumPoints - 1)
 End If

Mechanics Simulator 2014

Matthew Arnold 169 Candidate Number - 7061

 ReDim GraphPoints(NumPoints - 1)
 For i = 0 To NumPoints - 1
 GraphPoints(i) = New Point(230 + i * XDistance, 680 -
RelevantReports(i).Score / 100 * 295)
 Next

 'PixWidth = 650
 'PixHeight = 295
 End Sub

 Public Overrides Sub HandleInput()
 If MainMenuButton.Clicked = "Clicked" Then
 ScreenManager.UnloadScreen(Name)
 ScreenManager.AddScreen(New Title)
 ScreenManager.AddScreen(New SimulationButton)
 ScreenManager.AddScreen(New TestButton)
 ScreenManager.AddScreen(New MyProgressButton)
 End If
 If SettingsButton.Clicked = "Clicked" Then
 ScreenManager.UnloadScreen(Name)
 ScreenManager.AddScreen(New Settings({New MyProgressReport}))
 End If

 For Each Button In GraphButtons
 If Button.Clicked() = "Clicked" Then
 CurrentCategory = Button.Text
 SetGraphPoints(CurrentCategory)
 End If
 Next
 End Sub

 Private Function DrawRow(ByVal String1 As String, String2 As String, TempY As
Integer)
 'Draw one line of text where two parts are of different colours
 Dim StringLength1 As Integer = Main.GFX.MeasureString(String1,
Main.Arial_20).Width
 Dim StringLength2 As Integer = Main.GFX.MeasureString(String2,
Main.Arial_20).Width

 Main.GFX.DrawString(String1, Main.Arial_20, Brushes.Black, 480 -
(StringLength1 + StringLength2) \ 2, TempY)
 Main.GFX.DrawString(String2, Main.Arial_20, New SolidBrush(Color.FromArgb(0,
128, 0)), 480 - (StringLength1 + StringLength2) \ 2 + StringLength1, TempY)

 Return Main.GFX.MeasureString(String1 & String2, Main.Arial_20).Height
 End Function
 Public Overrides Sub Draw()
 Dim TempY As Integer = 15

 'TITLE
 Main.GFX.DrawString("MY PROGRESS", Main.Arial_30_Bold, New
SolidBrush(Color.FromArgb(0, 128, 0)), 480 - Main.GFX.MeasureString("MY PROGRESS",
Main.Arial_30_Bold).Width \ 2, TempY)
 TempY += Main.GFX.MeasureString("MY PROGRESS", Main.Arial_30_Bold).Height
 Main.GFX.DrawString(Main.CurrentUser, Main.Arial_30_Bold, Brushes.Black, 480 -
Main.GFX.MeasureString(Main.CurrentUser, Main.Arial_30_Bold).Width \ 2, TempY)
 TempY += Main.GFX.MeasureString(Main.CurrentUser, Main.Arial_30_Bold).Height +
15
 'Menu
 MainMenuButton.Draw()

Mechanics Simulator 2014

Matthew Arnold 170 Candidate Number - 7061

 SettingsButton.Draw()

 If TestReports.Count > 0 Then
 'TOP HALF INFO
 'No. Tests completed
 TempY += DrawRow("Tests Completed: ", TestReports.Count, TempY)
 'Average Score
 TempY += DrawRow("Average Score: ", AverageScore & "%", TempY)
 'Date Started
 TempY += DrawRow("Date Started: ", FirstTestDate.Date, TempY)
 'Most Recent Test
 TempY += DrawRow("Most Recent Test: ", RecentTestDate.Date, TempY)
 'Best Category
 TempY += DrawRow("Best Category: ", BestCategoryName, TempY)
 'Worst Category
 TempY += DrawRow("Worst Category: ", WorstCategoryName, TempY)
 'DIVIDING LINE
 Main.GFX.DrawLine(New Pen(New SolidBrush(Color.FromArgb(0, 128, 0)), 5),
30, 360, 930, 360)
 'BOTTOM HALF BUTTONS
 Main.GFX.DrawString("CATEGORY", Main.Arial_15_Bold, Brushes.Black, 40,
375)
 For Each Button In GraphButtons
 Button.Draw()
 Next
 Main.GFX.DrawString(CurrentCategory, Main.Arial_10, New
SolidBrush(Color.FromArgb(0, 128, 0)), 40, 680)
 'GRAPH
 Main.GFX.DrawRectangle(Pens.Black, 200, 375, 700, 325)
 'Y-Axis
 Main.GFX.DrawLine(New Pen(Brushes.Black, 3), 230, 680, 230, 385)
 Main.GFX.DrawString("100", Main.Arial_12_Bold, Brushes.Black, 198, 380)
 Main.GFX.DrawString("80", Main.Arial_12_Bold, Brushes.Black, 205, 435)
 Main.GFX.DrawString("60", Main.Arial_12_Bold, Brushes.Black, 205, 494)
 Main.GFX.DrawString("%", Main.Arial_15_Bold, Brushes.Black, 205, 523)
 Main.GFX.DrawString("40", Main.Arial_12_Bold, Brushes.Black, 205, 553)
 Main.GFX.DrawString("20", Main.Arial_12_Bold, Brushes.Black, 205, 612)
 Main.GFX.DrawString("0", Main.Arial_12_Bold, Brushes.Black, 210, 670)
 'X-Axis
 Main.GFX.DrawLine(New Pen(Brushes.Black, 3), 230, 680, 880, 680)
 Main.GFX.DrawString("Test Number", Main.Arial_15_Bold, Brushes.Black, 470,
680)
 'Horizontal Dividing lines
 For i = 1 To 5
 Main.GFX.DrawLine(Pens.Black, 230, 680 - i * 59, 880, 680 - i * 59)
 Next
 'Plot Line
 If GraphPoints.Length > 1 Then
 Main.GFX.DrawLines(New Pen(Brushes.Red, 3), GraphPoints)
 End If
 'Plot Points
 For Each Point In GraphPoints
 Main.GFX.DrawString(".", Main.Arial_30_Bold, Brushes.Blue, Point.X -
12, Point.Y - 33)
 Next
 Else
 'If no test data
 Main.GFX.DrawString("You have not yet completed any tests.",
Main.Arial_30_Bold, New SolidBrush(Color.FromArgb(0, 128, 0)), 480 -
Main.GFX.MeasureString("You have not yet completed any tests.",
Main.Arial_30_Bold).Width \ 2, 360)

Mechanics Simulator 2014

Matthew Arnold 171 Candidate Number - 7061

 End If
 End Sub
End Class

UserSelection

This screen is the parent/base class of the two User Selection screens (Test and My Progress). The

reason for this is that these two subclasses are identical, except from their colour and which screens

they point to. User selection screens will look at the text file directory, and firstly delete any files

with unwanted file extensions (all of my save files end in “.sv”). It will generate a list of all possible

users. It handles input for clicking on these User Names, as well as creating new users.

Imports System.IO

Public Class UserSelection
 Inherits BaseScreen

 Protected MenuButton As TextButton
 Protected NewUserBox As WritingBox
 Protected CreateUserButton As TextButton

 Protected UserLists As New List(Of AlignLeftMenu)
 Protected Users As New List(Of String)

 Protected UserAlreadyExistsError As Date

 Protected SectionColour As Color

 Protected Sub RefreshExistingUserLists()
 Users.Clear()
 UserLists.Clear()

 For Each FoundFile In Directory.GetFiles(Environment.CurrentDirectory)
 If InStr(FoundFile, ".sv") = 0 Then
 'Invalid file in directory
 File.Delete(FoundFile)
 Else
 'Get the user name from the file path
 FoundFile = FoundFile.Replace(Environment.CurrentDirectory & "\", "")
 FoundFile = FoundFile.Substring(0, FoundFile.Length - 3)
 Users.Add(FoundFile)
 End If
 Next

 'There will be potentially two lists of user names. Each list can be 21 names
long
 'Create the user lists
 UserLists.Add(New AlignLeftMenu(New Point(20, 120), Main.Arial_15_Bold,
Color.FromArgb(80 / 100 * 255, SectionColour), SectionColour))
 If Users.Count > 21 Then
 UserLists.Add(New AlignLeftMenu(New Point(240, 120), Main.Arial_15_Bold,
Color.FromArgb(70 / 100 * 255, SectionColour), SectionColour))
 End If

 'Add usernames to the lists
 Dim Count As Integer = 1
 For Each User In Users
 If Count <= 21 Then
 'First List
 UserLists(0).AddOption(User)

Mechanics Simulator 2014

Matthew Arnold 172 Candidate Number - 7061

 Else
 'Second List
 UserLists(1).AddOption(User)
 End If
 Count += 1
 Next
 End Sub

 Public Overrides Sub HandleInput()
 If MenuButton.Clicked() = "Clicked" Then
 ScreenManager.UnloadScreen(Name)
 ScreenManager.AddScreen(New Title)
 ScreenManager.AddScreen(New SimulationButton)
 ScreenManager.AddScreen(New TestButton)
 ScreenManager.AddScreen(New MyProgressButton)
 End If

 Dim Result As String
 For Each FoundList In UserLists
 Result = FoundList.Update()
 If Result <> "" Then
 'Option has been chosen
 Advance(Result)
 End If
 Next

 If NewUserBox.HandleInput() = "Entered" Or (CreateUserButton.Clicked =
"Clicked" And NewUserBox.Text <> "") Then
 'Check against existing
 For Each User In Users
 If NewUserBox.Text = User Then
 'Initialises a 2 second timer to display the error message for.
 UserAlreadyExistsError = Now
 Exit Sub
 End If
 Next

 File.WriteAllText(NewUserBox.Text & ".sv", "")
 RefreshExistingUserLists()

 NewUserBox.Text = ""
 End If
 End Sub

 Protected Overridable Sub Advance(ByVal ChosenOption As String)
 Main.CurrentUser = ChosenOption
 ScreenManager.UnloadScreen(Name)
 End Sub

 Public Overrides Sub Draw()
 'LEFT SIDE
 Main.GFX.DrawString("Already used this program?", Main.Arial_20_Bold,
Brushes.Black, 20, 50)
 Main.GFX.DrawString("Select your user name from the list:", Main.Arial_15,
Brushes.Black, 20, 90)
 For Each FoundList In UserLists
 FoundList.Draw()
 Next
 'CENTRE DIVIDER
 Main.GFX.DrawLine(New Pen(New SolidBrush(SectionColour), 5), 480, 50, 480,
280)

Mechanics Simulator 2014

Matthew Arnold 173 Candidate Number - 7061

 Main.GFX.DrawString("OR", Main.Arial_20_Bold, New SolidBrush(SectionColour),
455, 290)
 Main.GFX.DrawLine(New Pen(New SolidBrush(SectionColour), 5), 480, 330, 480,
580)
 'Menu Button
 MenuButton.Draw()
 'RIGHT SIDE
 Main.GFX.DrawString("New User?", Main.Arial_20_Bold, Brushes.Black, 505, 50)
 Main.GFX.DrawString("Create a new user name:", Main.Arial_15, Brushes.Black,
505, 90)
 NewUserBox.Draw()
 CreateUserButton.Draw()
 Main.GFX.DrawString("Only letters and numbers can be used.", Main.Arial_10,
Brushes.Black, 505, 180)
 If NewUserBox.ReachedMaxChars = True Then
 Main.GFX.DrawString("User names cannot be longer than 10 characters.",
Main.Arial_10, Brushes.Red, 505, 195)
 Else
 Main.GFX.DrawString("User names cannot be longer than 10 characters.",
Main.Arial_10, Brushes.Black, 505, 195)
 End If
 If UserAlreadyExistsError <> Nothing Then
 If (Now - UserAlreadyExistsError).TotalMilliseconds > 2000 Then
 UserAlreadyExistsError = Nothing
 End If

 Main.GFX.DrawString("That user name already exists.", Main.Arial_10,
Brushes.Red, 505, 210)
 End If

 End Sub
End Class

TestUserSelection

The Test User Selection screen is red and point to the Test Menu.

Imports System.IO

Public Class TestUserSelection
 Inherits UserSelection

MenuButton : TextButton

NewUserBox : WritingBox

CreateUserButton : TextButton
UserLists(0) : AlignLeftMenu

Mechanics Simulator 2014

Matthew Arnold 174 Candidate Number - 7061

 Public Sub New()
 'MAX USERNAME LENGTH IS 10

 MenuButton = New TextButton("Back to Main" & vbNewLine & " Menu",
Main.Arial_20_Bold, ProgramSection.Test, New Point(387, 600), -1, -1, 3, 1)
 NewUserBox = New WritingBox(New Point(505, 130), Main.Arial_20_Bold,
ProgramSection.Test, 3, "WWWWWWWWWW")
 CreateUserButton = New TextButton("Create", Main.Arial_20_Bold,
ProgramSection.Test, New Point(800, 129), -1, -1, 3, 1)

 Name = "TestUserSelection"
 Location = New Point(0, 0)
 State = ScreenState.Active

 SectionColour = Color.FromArgb(199, 0, 0)

 RefreshExistingUserLists()
 End Sub

 Protected Overrides Sub Advance(ChosenOption As String)
 MyBase.Advance(ChosenOption)
 ScreenManager.AddScreen(New TestMenu)
 End Sub
End Class

MyProgressUserSelection

The My Progress User Selection screen is green and point to the My Progress Report.

Imports System.IO

Public Class MyProgressUserSelection
 Inherits UserSelection

 Public Sub New()
 'MAX USERNAME LENGTH IS 10

 MenuButton = New TextButton("Back to Main" & vbNewLine & " Menu",
Main.Arial_20_Bold, ProgramSection.MyProgress, New Point(387, 600), -1, -1, 3, 1)

MenuButton : TextButton

NewUserBox : WritingBox

UserLists(0) : AlignLeftMenu
CreateUserButton : TextButton

Mechanics Simulator 2014

Matthew Arnold 175 Candidate Number - 7061

 NewUserBox = New WritingBox(New Point(505, 130), Main.Arial_20_Bold,
ProgramSection.MyProgress, 3, "WWWWWWWWWW")
 CreateUserButton = New TextButton("Create", Main.Arial_20_Bold,
ProgramSection.MyProgress, New Point(800, 129), -1, -1, 3, 1)

 Name = "MyProgressUserSelection"
 Location = New Point(0, 0)
 State = ScreenState.Active

 SectionColour = Color.FromArgb(0, 128, 0)

 RefreshExistingUserLists()
 End Sub

 Protected Overrides Sub Advance(ChosenOption As String)
 MyBase.Advance(ChosenOption)
 ScreenManager.AddScreen(New MyProgressReport)
 End Sub
End Class

BaseButton

The Base Button is the parent/base class of the button tools. There are two inheriting buttons:

PictureButton and TextButton. The most important function, Clicked, is used by the buttons’ parent

classes to see the state of the button: Clicked, MouseDown, Hover or nothing. The button will also

draw differently depending on what state it’s in.

Public Class BaseButton
 Public Location As New Point
 Public Size As New Size
 Public MouseHover, MouseDown As Boolean

 Public Function Clicked() As String
 If Windows.Forms.Form.MousePosition.X - Main.Left - 15 >= Location.X And
Windows.Forms.Form.MousePosition.X - Main.Left - 15 <= Location.X + Size.Width And
Windows.Forms.Form.MousePosition.Y - Main.Top - 15 >= Location.Y And
Windows.Forms.Form.MousePosition.Y - Main.Top - 15 <= Location.Y + Size.Height Then
 ' If the mouse cursor is inside the button
 MouseHover = True
 For Each Click In Main.MouseButtonsUp
 If Click.Button = MouseButtons.Left Then
 ' If the left mouse button was held down and is now up (has been
clicked)
 Return "Clicked"
 End If
 Next
 If Windows.Forms.Form.MouseButtons = MouseButtons.Left Then
 'If the left mouse button is held down
 MouseDown = True
 Return "MouseDown"
 Else
 MouseDown = False
 End If
 Return "Hover"
 Else
 MouseHover = False
 End If

 Return ""
 End Function

Mechanics Simulator 2014

Matthew Arnold 176 Candidate Number - 7061

 Public Overridable Sub DrawDefault()
 'Draw if the mouse cursor is outside the button
 End Sub

 Public Overridable Sub DrawMouseHover()
 'Draw if the mouse cursor is in the button, but is not held down
 End Sub

 Public Overridable Sub DrawMouseDown()
 'Draw if the left mouse button is held down inside the cursor
 End Sub

 Public Sub Draw()
 'Choose the correct Draw procedure based on the state of the button:
 'Default, MouseHover or MouseDown
 If MouseHover = True Then
 If MouseDown = True Then
 DrawMouseDown()
 Else
 DrawMouseHover()
 End If
 Else
 DrawDefault()
 End If
 End Sub
End Class

PictureButton

This is a type of button for which each possible state of the button is a different picture. The only

times in the program when I use Picture Buttons are for the Play, Pause and Stop buttons on each

Simulation.

Public Class PictureButton
 Inherits BaseButton
 Private DefaultImage, MouseHoverImage, MouseDownImage As Image

 ''' <summary>
 '''
 ''' </summary>
 ''' <param name="InputLocation"></param>
 ''' <param name="InputDefaultImage"></param>
 ''' <param name="InputMouseHoverImage"></param>
 ''' <param name="InputMouseDownImage"></param>
 ''' <param name="InputWidth">Set to -1 for horizontal auto-sizing based on the
default image size.</param>
 ''' <param name="InputHeight">Set to -1 for vertical auto-sizing based on the
default image size.</param>
 ''' <remarks></remarks>
 Public Sub New(ByVal InputLocation As Point, ByVal InputDefaultImage As Image,
ByVal InputMouseHoverImage As Image, ByVal InputMouseDownImage As Image, ByVal
InputWidth As Integer, ByVal InputHeight As Integer)

Example of a Picture Button.

From left: Default,

MouseHover, MouseDown

Mechanics Simulator 2014

Matthew Arnold 177 Candidate Number - 7061

 Location = InputLocation
 DefaultImage = InputDefaultImage
 MouseHoverImage = InputMouseHoverImage
 MouseDownImage = InputMouseDownImage

 If InputWidth = -1 Then
 Size.Width = DefaultImage.Width
 Else
 Size.Width = InputWidth
 End If
 If InputHeight = -1 Then
 Size.Height = DefaultImage.Height
 Else
 Size.Height = InputHeight
 End If
 End Sub

 Public Overrides Sub DrawDefault()
 Main.GFX.DrawImage(DefaultImage, Location)
 End Sub

 Public Overrides Sub DrawMouseHover()
 Main.GFX.DrawImage(MouseHoverImage, Location)
 End Sub

 Public Overrides Sub DrawMouseDown()
 Main.GFX.DrawImage(MouseDownImage, Location)
 End Sub
End Class

TextButton

This is a type of button for which each possible state of the button has a different Text, Background

and Border colour. The button has a fixed Text which is set at instantiation. There are two ways to

instantiate a Text Button: by manually setting all possible colours or by inputting a Program Section

(Simulation, Test, MyProgress, Other), for which there are pre-set colours. I make a huge use of Text

Buttons in my program.

Public Enum ProgramSection
 Simulation
 Test
 MyProgress
 Other
End Enum

Public Class TextButton
 Inherits BaseButton

 Public Text As String

Example of a Text Button. From left: Default, MouseHover, MouseDown

Mechanics Simulator 2014

Matthew Arnold 178 Candidate Number - 7061

 Public DefaultBackColour, HoverBackColour, MouseDownBackColour, DefaultTextColour,
HoverTextColour, MouseDownTextColour, DefaultBorderColour, HoverBorderColour,
MouseDownBorderColour As Color
 Private TextFont As Font
 Private Margin As Point
 Private BorderThickness As Integer

 ''' <summary>
 ''' For completely custom buttons.
 ''' </summary>
 ''' <param name="InputText"></param>
 ''' <param name="InputTextFont"></param>
 ''' <param name="InputDefaultTextColour"></param>
 ''' <param name="InputDefaultBackColour"></param>
 ''' <param name="InputDefaultBorderColour"></param>
 ''' <param name="InputHoverTextColour"></param>
 ''' <param name="InputHoverBackColour"></param>
 ''' <param name="InputHoverBorderColour"></param>
 ''' <param name="InputPosition"></param>
 ''' <param name="InputWidth">Set to -1 for horizontal auto-sizing.</param>
 ''' <param name="InputHeight">Set to -1 for vertical auto-sizing.</param>
 ''' <param name="InputBorderThickness"></param>
 ''' <param name="InputMinimumMargin"></param>
 ''' <remarks></remarks>
 Public Sub New(ByVal InputText As String, ByVal InputTextFont As Font, ByVal
InputDefaultTextColour As Color, ByVal InputDefaultBackColour As Color, ByVal
InputDefaultBorderColour As Color, ByVal InputHoverTextColour As Color, ByVal
InputHoverBackColour As Color, ByVal InputHoverBorderColour As Color, ByVal
InputMouseDownTextColour As Color, ByVal InputMouseDownBackColour As Color, ByVal
InputMouseDownBorderColour As Color, ByVal InputPosition As Point, ByVal InputWidth As
Integer, ByVal InputHeight As Integer, ByVal InputBorderThickness As Integer, Optional
ByVal InputMinimumMargin As Integer = 3)
 Location = InputPosition
 Text = InputText
 TextFont = InputTextFont
 DefaultBackColour = InputDefaultBackColour
 HoverBackColour = InputHoverBackColour
 MouseDownBackColour = InputMouseDownBackColour
 DefaultTextColour = InputDefaultTextColour
 HoverTextColour = InputHoverTextColour
 MouseDownTextColour = InputMouseDownTextColour
 BorderThickness = InputBorderThickness
 DefaultBorderColour = InputDefaultBorderColour
 HoverBorderColour = InputHoverBorderColour
 MouseDownBorderColour = InputMouseDownBorderColour

 If InputWidth > -1 Then
 Size.Width = InputWidth
 Else
 'HORIZONTAL AUTOSIZING BASED ON THE WIDTH OF THE TEXT
 Size.Width = (BorderThickness + InputMinimumMargin) * 2 +
Main.GFX.MeasureString(Text, TextFont).Width
 End If
 If InputHeight > -1 Then
 Size.Height = InputHeight
 Else
 'VERTICAL AUTOSIZING BASED ON THE HEIGHT OF THE TEXT
 Size.Height = (BorderThickness + InputMinimumMargin) * 2 +
Main.GFX.MeasureString(Text, TextFont).Height
 End If

Mechanics Simulator 2014

Matthew Arnold 179 Candidate Number - 7061

 Margin = New Point(Size.Width \ 2 - Main.GFX.MeasureString(Text,
TextFont).Width \ 2, Size.Height \ 2 - Main.GFX.MeasureString(Text, TextFont).Height \
2)
 End Sub

 ''' <summary>
 ''' For section-specific buttons to match the program colour scheme.
 ''' </summary>
 ''' <param name="InputText"></param>
 ''' <param name="InputTextFont"></param>
 ''' <param name="InputProgramSection"></param>
 ''' <param name="InputPosition"></param>
 ''' <param name="InputWidth">Set to -1 for horizontal auto-sizing.</param>
 ''' <param name="InputHeight">Set to -1 for vertical auto-sizing.</param>
 ''' <param name="InputBorderThickness"></param>
 ''' <param name="InputMinimumMargin"></param>
 ''' <remarks></remarks>
 Public Sub New(ByVal InputText As String, ByVal InputTextFont As Font, ByVal
InputProgramSection As ProgramSection, ByVal InputPosition As Point, ByVal InputWidth
As Integer, ByVal InputHeight As Integer, ByVal InputBorderThickness As Integer,
Optional ByVal InputMinimumMargin As Integer = 3)
 Location = InputPosition
 Text = InputText
 TextFont = InputTextFont
 Select Case InputProgramSection
 Case ProgramSection.Simulation
 DefaultBackColour = Color.FromArgb(217, 238, 255) 'Back with s: 26%
 HoverBackColour = Color.FromArgb(161, 213, 255) 'Back with s: 64%
 MouseDownBackColour = Color.FromArgb(107, 188, 255) 'Back on main
button
 DefaultTextColour = Color.FromArgb(0, 90, 194) 'Text on main button
 HoverTextColour = DefaultTextColour
 MouseDownTextColour = DefaultTextColour
 DefaultBorderColour = HoverBackColour
 HoverBorderColour = DefaultTextColour
 MouseDownBorderColour = DefaultTextColour
 Case ProgramSection.Test
 DefaultBackColour = Color.FromArgb(255, 227, 227) 'Back with s: 26%
 HoverBackColour = Color.FromArgb(255, 189, 189) 'Back with s: 64%
 MouseDownBackColour = Color.FromArgb(255, 150, 150) 'Back on main
button
 DefaultTextColour = Color.FromArgb(199, 0, 0) 'Text on main button
 HoverTextColour = DefaultTextColour
 MouseDownTextColour = DefaultTextColour
 DefaultBorderColour = HoverBackColour
 HoverBorderColour = DefaultTextColour
 MouseDownBorderColour = DefaultTextColour
 Case ProgramSection.MyProgress
 DefaultBackColour = Color.FromArgb(230, 255, 230) 'Back with s: 26%
 HoverBackColour = Color.FromArgb(189, 255, 189) 'Back with s: 64%
 MouseDownBackColour = Color.FromArgb(153, 255, 153) 'Back on main
button
 DefaultTextColour = Color.FromArgb(0, 128, 0) 'Text on main button
 HoverTextColour = DefaultTextColour
 MouseDownTextColour = DefaultTextColour
 DefaultBorderColour = HoverBackColour
 HoverBorderColour = DefaultTextColour
 MouseDownBorderColour = DefaultTextColour
 Case ProgramSection.Other
 DefaultBackColour = Color.FromArgb(248, 230, 255) 'Back with s: 26%
 HoverBackColour = Color.FromArgb(236, 189, 255) 'Back with s: 64%

Mechanics Simulator 2014

Matthew Arnold 180 Candidate Number - 7061

 MouseDownBackColour = Color.FromArgb(226, 153, 255) 'Back on main
button
 DefaultTextColour = Color.FromArgb(166, 0, 232) 'Text on main button
 HoverTextColour = DefaultTextColour
 MouseDownTextColour = DefaultTextColour
 DefaultBorderColour = HoverBackColour
 HoverBorderColour = DefaultTextColour
 MouseDownBorderColour = DefaultTextColour
 End Select
 BorderThickness = InputBorderThickness

 If InputWidth > -1 Then
 Size.Width = InputWidth
 Else
 'HORIZONTAL AUTOSIZING BASED ON THE WIDTH OF THE TEXT
 Size.Width = (BorderThickness + InputMinimumMargin) * 2 +
Main.GFX.MeasureString(Text, TextFont).Width
 End If
 If InputHeight > -1 Then
 Size.Height = InputHeight
 Else
 'VERTICAL AUTOSIZING BASED ON THE HEIGHT OF THE TEXT
 Size.Height = (BorderThickness + InputMinimumMargin) * 2 +
Main.GFX.MeasureString(Text, TextFont).Height
 End If

 Margin = New Point(Size.Width \ 2 - Main.GFX.MeasureString(Text,
TextFont).Width \ 2, Size.Height \ 2 - Main.GFX.MeasureString(Text, TextFont).Height \
2)
 End Sub

 Public Overrides Sub DrawDefault()
 Main.GFX.FillRectangle(New SolidBrush(DefaultBackColour), Location.X,
Location.Y, Size.Width, Size.Height)
 Main.GFX.DrawRectangle(New Pen(New SolidBrush(DefaultBorderColour),
BorderThickness), Location.X + BorderThickness \ 2, Location.Y + BorderThickness \ 2,
Size.Width - BorderThickness, Size.Height - BorderThickness)
 Main.GFX.DrawString(Text, TextFont, New SolidBrush(DefaultTextColour),
Location.X + Margin.X, Location.Y + Margin.Y)
 End Sub

 Public Overrides Sub DrawMouseHover()
 Main.GFX.FillRectangle(New SolidBrush(HoverBackColour), Location.X,
Location.Y, Size.Width, Size.Height)
 Main.GFX.DrawRectangle(New Pen(New SolidBrush(HoverBorderColour),
BorderThickness), Location.X + BorderThickness \ 2, Location.Y + BorderThickness \ 2,
Size.Width - BorderThickness, Size.Height - BorderThickness)
 Main.GFX.DrawString(Text, TextFont, New SolidBrush(HoverTextColour),
Location.X + Margin.X, Location.Y + Margin.Y)
 End Sub

 Public Overrides Sub DrawMouseDown()
 Main.GFX.FillRectangle(New SolidBrush(MouseDownBackColour), Location.X,
Location.Y, Size.Width, Size.Height)
 Main.GFX.DrawRectangle(New Pen(New SolidBrush(MouseDownBorderColour),
BorderThickness), Location.X + BorderThickness \ 2, Location.Y + BorderThickness \ 2,
Size.Width - BorderThickness, Size.Height - BorderThickness)
 Main.GFX.DrawString(Text, TextFont, New SolidBrush(MouseDownTextColour),
Location.X + Margin.X, Location.Y + Margin.Y)
 End Sub
End Class

Mechanics Simulator 2014

Matthew Arnold 181 Candidate Number - 7061

BaseMenu

This is the parent/base class for the Menu tools. There is a list of items and when an item is clicked,

it’s value is returned.

Public Class BaseMenu
 Public MenuFont As Font
 Public MenuLocation As Point
 Public MenuOptionY As Integer

 Public MenuOptions As New List(Of String)
 Public OptionDefaultColor, OptionMouseHoverColor As Color
 Public OptionDropShadow As Boolean
 Public DropShadowDepth As Integer

 Public Sub New(ByVal InputMenuLocation As Point, ByVal InputMenuFont As Font,
ByVal InputOptionDefaultColor As Color, ByVal InputOptionMouseHoverColor As Color,
Optional ByVal InputOptionDropShadow As Boolean = False)
 OptionDefaultColor = InputOptionDefaultColor
 OptionMouseHoverColor = InputOptionMouseHoverColor
 MenuFont = InputMenuFont
 OptionDropShadow = InputOptionDropShadow
 MenuLocation = InputMenuLocation

 If OptionDropShadow Then
 If MenuFont.Size > 35 Then
 DropShadowDepth = 2
 Else
 DropShadowDepth = 1
 End If
 End If

 MenuOptionY = MenuFont.Size * 1.5
 End Sub

 Public Sub AddOption(ByVal OptionName As String)
 MenuOptions.Add(OptionName)
 End Sub
End Class

AlignLeftMenu

This is a type of Menu for which all items start at the X coordinate given. These menus are used on

the title screen and user selection screens.

Public Class AlignLeftMenu
 Inherits BaseMenu

 Public Sub New(ByVal InputMenuLocation As Point, ByVal InputMenuFont As Font,
ByVal InputOptionDefaultColor As Color, ByVal InputOptionMouseHoverColor As Color,
Optional ByVal InputOptionDropShadow As Boolean = False)
 MyBase.New(InputMenuLocation, InputMenuFont, InputOptionDefaultColor,
InputOptionMouseHoverColor, InputOptionDropShadow)
 End Sub

Example of an Align Left

Menu (from the Title

screen)

Mechanics Simulator 2014

Matthew Arnold 182 Candidate Number - 7061

 Public Function Update()
 Dim Width, Height As Integer
 Dim count As Integer = 0

 If Main.MouseButtonsUp.Count > 0 Then
 For Each MouseThingy In Main.MouseButtonsUp
 If MouseThingy.Button = MouseButtons.Left Then
 ' If the left mouse button has been clicked
 'CHECK POSITION FOR EACH OPTION
 For Each MenuOption In MenuOptions
 Width = Main.GFX.MeasureString(MenuOption, MenuFont).Width
 Height = Main.GFX.MeasureString(MenuOption, MenuFont).Height
 If Windows.Forms.Form.MousePosition.X - Main.Left - 15 >
MenuLocation.X And Windows.Forms.Form.MousePosition.X - Main.Left - 15 <
MenuLocation.X + Width And Windows.Forms.Form.MousePosition.Y - Main.Top - 15 >
MenuLocation.Y + MenuOptionY * count And Windows.Forms.Form.MousePosition.Y - Main.Top
- 15 < MenuLocation.Y + MenuOptionY * (count + 1) Then
 'Return the name of the Menu Option which has been clicked
 Return MenuOption
 End If
 count += 1
 Next

 Exit For
 End If
 Next
 End If
 Return ""
 End Function

 Public Sub Draw()
 Dim Count As Integer = 0
 Dim Width, Height As Integer

 For Each MenuOption In MenuOptions
 Width = Main.GFX.MeasureString(MenuOption, MenuFont).Width
 Height = Main.GFX.MeasureString(MenuOption, MenuFont).Height

 If Windows.Forms.Form.MousePosition.X - Main.Left - 15 > MenuLocation.X
And Windows.Forms.Form.MousePosition.X - Main.Left - 15 < MenuLocation.X + Width And
Windows.Forms.Form.MousePosition.Y - Main.Top - 15 > MenuLocation.Y + MenuOptionY *
Count And Windows.Forms.Form.MousePosition.Y - Main.Top - 15 < MenuLocation.Y +
MenuOptionY * (Count + 1) Then
 'If Mouse is in option
 Main.GFX.DrawString(MenuOption, MenuFont, New
SolidBrush(OptionMouseHoverColor), New Point(MenuLocation.X, MenuLocation.Y +
MenuOptionY * Count))
 Else
 If OptionDropShadow Then
 Main.GFX.DrawString(MenuOption, MenuFont, New
SolidBrush(Color.FromArgb(60 / 100 * 255, 0, 0, 0)), New Point(MenuLocation.X -
DropShadowDepth * 2, MenuLocation.Y + MenuOptionY * Count - DropShadowDepth * 2))
 Main.GFX.DrawString(MenuOption, MenuFont, New
SolidBrush(Color.FromArgb(60 / 100 * 255, OptionDefaultColor)), New
Point(MenuLocation.X - DropShadowDepth, MenuLocation.Y + MenuOptionY * Count -
DropShadowDepth))
 End If
 Main.GFX.DrawString(MenuOption, MenuFont, New
SolidBrush(OptionDefaultColor), New Point(MenuLocation.X, MenuLocation.Y + MenuOptionY
* Count))
 End If

Mechanics Simulator 2014

Matthew Arnold 183 Candidate Number - 7061

 Count += 1
 Next
 End Sub
End Class

AlignCentreMenu

This is a type of Menu for which all items are centred with the X coordinate given. Although I never

make use of this tool in my program, I created it near the beginning as I thought that I may have a

need for it.

Public Class AlignLeftMenu
 Inherits BaseMenu

 Public Sub New(ByVal InputMenuLocation As Point, ByVal InputMenuFont As Font,
ByVal InputOptionDefaultColor As Color, ByVal InputOptionMouseHoverColor As Color,
Optional ByVal InputOptionDropShadow As Boolean = False)
 MyBase.New(InputMenuLocation, InputMenuFont, InputOptionDefaultColor,
InputOptionMouseHoverColor, InputOptionDropShadow)
 End Sub

 Public Function Update()
 Dim Width, Height As Integer
 Dim count As Integer = 0

 If Main.MouseButtonsUp.Count > 0 Then
 For Each MouseThingy In Main.MouseButtonsUp
 If MouseThingy.Button = MouseButtons.Left Then
 ' If the left mouse button has been clicked
 'CHECK POSITION FOR EACH OPTION
 For Each MenuOption In MenuOptions
 Width = Main.GFX.MeasureString(MenuOption, MenuFont).Width
 Height = Main.GFX.MeasureString(MenuOption, MenuFont).Height
 If Windows.Forms.Form.MousePosition.X - Main.Left - 15 >
MenuLocation.X And Windows.Forms.Form.MousePosition.X - Main.Left - 15 <
MenuLocation.X + Width And Windows.Forms.Form.MousePosition.Y - Main.Top - 15 >
MenuLocation.Y + MenuOptionY * count And Windows.Forms.Form.MousePosition.Y - Main.Top
- 15 < MenuLocation.Y + MenuOptionY * (count + 1) Then
 'Return the name of the Menu Option which has been clicked
 Return MenuOption
 End If
 count += 1
 Next

 Exit For
 End If
 Next
 End If
 Return ""
 End Function

 Public Sub Draw()
 Dim Count As Integer = 0
 Dim Width, Height As Integer

 For Each MenuOption In MenuOptions
 Width = Main.GFX.MeasureString(MenuOption, MenuFont).Width
 Height = Main.GFX.MeasureString(MenuOption, MenuFont).Height

Mechanics Simulator 2014

Matthew Arnold 184 Candidate Number - 7061

 If Windows.Forms.Form.MousePosition.X - Main.Left - 15 > MenuLocation.X
And Windows.Forms.Form.MousePosition.X - Main.Left - 15 < MenuLocation.X + Width And
Windows.Forms.Form.MousePosition.Y - Main.Top - 15 > MenuLocation.Y + MenuOptionY *
Count And Windows.Forms.Form.MousePosition.Y - Main.Top - 15 < MenuLocation.Y +
MenuOptionY * (Count + 1) Then
 'If Mouse is in option
 Main.GFX.DrawString(MenuOption, MenuFont, New
SolidBrush(OptionMouseHoverColor), New Point(MenuLocation.X, MenuLocation.Y +
MenuOptionY * Count))
 Else
 If OptionDropShadow Then
 Main.GFX.DrawString(MenuOption, MenuFont, New
SolidBrush(Color.FromArgb(60 / 100 * 255, 0, 0, 0)), New Point(MenuLocation.X -
DropShadowDepth * 2, MenuLocation.Y + MenuOptionY * Count - DropShadowDepth * 2))
 Main.GFX.DrawString(MenuOption, MenuFont, New
SolidBrush(Color.FromArgb(60 / 100 * 255, OptionDefaultColor)), New
Point(MenuLocation.X - DropShadowDepth, MenuLocation.Y + MenuOptionY * Count -
DropShadowDepth))
 End If
 Main.GFX.DrawString(MenuOption, MenuFont, New
SolidBrush(OptionDefaultColor), New Point(MenuLocation.X, MenuLocation.Y + MenuOptionY
* Count))
 End If

 Count += 1
 Next
 End Sub
End Class

NumberBox

This is a text box intended for the input of numbers only. It only accepts numerical input, with the

exception of one dot (decimal place) anywhere except the beginning. It first calculates the Maximum

number of characters allowed in the box based on the width of the box and the font size given. Its

HandleInput function returns “Entered” when the enter key is pressed.

Number Boxes can be focused by clicking in them, and unfocused by pressing escape, enter, or

clicking outside the box. A focused box will be listening for input, and will have a darker border.

There is a CheckFilled function which returns true only if the number in the box has at least 2

decimal places. This is used for the Test questions. The border of the box will flash if this function

returns false.

Public Class NumberBox
 Public Text As String = ""
 Public Location As Point
 Private Size As Size
 Private BorderThickness, MaxChars As Integer
 Private Font As Font
 Public Focused As Boolean = False
 Public ReachedMaxChars As Boolean = False
 Private DefaultBorderColour, FocusedBorderColour As Color
 Private twoDPWarning As Boolean = False

Mechanics Simulator 2014

Matthew Arnold 185 Candidate Number - 7061

 Public Sub New(ByVal InputLocation As Point, ByVal InputFont As Font, ByVal
InputProgramSection As ProgramSection, ByVal InputBorderThickness As Integer, ByVal
InputMaximumWidth As Integer)
 Location = InputLocation
 Font = InputFont
 BorderThickness = InputBorderThickness
 Size = New Size(InputMaximumWidth, Main.GFX.MeasureString("|", Font).Height +
2 * BorderThickness)
 Dim TempWidth As Integer
 Dim TempString As String

 'FIND THE MAXIMUM NUMBER OF CHARACTERS BASED ON THE MAXIMUM PIXEL WIDTH
 MaxChars = -1
 Do
 'Need to leave space for the decimal point and the input cursor
 TempString = ".|"
 MaxChars += 1
 For i = 1 To MaxChars
 TempString += "0"
 Next
 TempWidth = Main.GFX.MeasureString(TempString, Font).Width
 'See if the width of a string with a decimal point, and MaxChars '0's and
the | cursor is too large
 Loop Until TempWidth >= InputMaximumWidth
 'If it's slightly too large, then the max chars should be one less
 MaxChars -= 1

 Select Case InputProgramSection
 Case ProgramSection.Simulation
 DefaultBorderColour = Color.FromArgb(161, 213, 255)
 FocusedBorderColour = Color.FromArgb(0, 90, 194)
 Case ProgramSection.Test
 DefaultBorderColour = Color.FromArgb(255, 189, 189)
 FocusedBorderColour = Color.FromArgb(199, 0, 0)
 Case ProgramSection.MyProgress

 Case ProgramSection.Other

 End Select
 End Sub

 Public Function HandleInput()
 If Focused = True Then
 For Each Key In Main.KeysDown

 If Key >= 96 And Key <= 105 Then
 'If it's a number on the numPad, change the code so that it's the
same
 Key -= 48
 End If

 If Key = 190 Then
 'If it's the dot on the numpad, change the code as if it's on the
main keyboard
 Key = 110
 End If

 Select Case Key
 Case 13
 'Enter
 Focused = False

Mechanics Simulator 2014

Matthew Arnold 186 Candidate Number - 7061

 If Text.Length > 0 Then
 Return "Entered"
 End If
 Case 27
 'Escape
 Text = ""
 Focused = False
 Case 48 To 57
 'Number
 If Text.Length < MaxChars Then
 Text &= Chr(Key)
 Else
 ReachedMaxChars = True
 End If
 Case 110
 'Dot
 If Text.Length < MaxChars And InStr(Text, ".") = 0 And
Text.Length > 0 Then
 Text &= "."
 Else
 ReachedMaxChars = True
 End If
 Case 8
 'Backspace
 If Text.Length > 0 Then
 Text = Text.Substring(0, Text.Length - 1)
 End If
 End Select

 Next
 End If

 If Text.Length < MaxChars Then
 ReachedMaxChars = False
 End If

 For Each Click In Main.MouseButtonsUp
 If Click.Button = MouseButtons.Left Then
 If Click.Location.X >= Location.X And Click.Location.X < Location.X +
Size.Width And Click.Location.Y >= Location.Y And Click.Location.Y < Location.Y +
Size.Height Then
 'Mouse up in text box
 Focused = True
 twoDPWarning = False
 Else
 'Mouse up out of text box
 Focused = False
 End If
 End If
 Next

 Return ""
 End Function

 Public Function CheckFilled() As Boolean
 'Checks whether the number box has been typed into, and that is contains a
number
 'with at least two decimal places

 If Text <> "" Then
 If InStr(Text, ".") <> 0 Then

Mechanics Simulator 2014

Matthew Arnold 187 Candidate Number - 7061

 'if is not empty and contains the decimal point
 If Split(Text, ".")(1).Length >= 2 Then
 'if the number of chars after the decimal point is at least 2
 Return True
 Else
 twoDPWarning = True
 End If
 Else
 twoDPWarning = True
 End If
 End If
 Return False
 End Function

 Public Sub Draw()
 'Draw Border
 If twoDPWarning = True And Now.Millisecond < 500 Then
 Main.GFX.DrawRectangle(New Pen(New SolidBrush(FocusedBorderColour),
BorderThickness), Location.X, Location.Y, Size.Width, Size.Height)
 Else
 If Focused = True Then
 Main.GFX.DrawRectangle(New Pen(New SolidBrush(FocusedBorderColour),
BorderThickness), Location.X, Location.Y, Size.Width, Size.Height)
 Else
 Main.GFX.DrawRectangle(New Pen(New SolidBrush(DefaultBorderColour),
BorderThickness), Location.X, Location.Y, Size.Width, Size.Height)
 End If
 End If

 'Draw Text
 If Focused = True And Now.Millisecond < 500 Then
 'This means that the "|" symbol only shows every other half second
 Main.GFX.DrawString(Text & "|", Font, Brushes.Black, New Point(Location.X
+ BorderThickness, Location.Y + BorderThickness))
 Else
 Main.GFX.DrawString(Text, Font, Brushes.Black, New Point(Location.X +
BorderThickness, Location.Y + BorderThickness))
 End If
 End Sub
End Class

WritingBox

This is a type of Text Box which only accepts uppercase letters, lowercase letters and numbers.

Other than this, it works similarly to the Number box. It is used only for the user selection screens

for the new user text boxes.

Public Class WritingBox
 Public Text As String = ""
 Private Location As Point
 Private Size As Size
 Private BorderThickness, MaxChars As Integer
 Private Font As Font
 Private Focused As Boolean = False
 Public ReachedMaxChars As Boolean = False
 Private DefaultBorderColour, FocusedBorderColour As Color

Mechanics Simulator 2014

Matthew Arnold 188 Candidate Number - 7061

 Public Sub New(ByVal InputLocation As Point, ByVal InputFont As Font, ByVal
InputProgramSection As ProgramSection, ByVal InputBorderThickness As Integer, ByVal
InputMaximumLengthString As String)
 Location = InputLocation
 Font = InputFont
 BorderThickness = InputBorderThickness
 MaxChars = InputMaximumLengthString.Length
 Size = New Size(Main.GFX.MeasureString(InputMaximumLengthString & "|",
Font).Width + 2 * BorderThickness, Main.GFX.MeasureString(InputMaximumLengthString &
"|", Font).Height + 2 * BorderThickness)

 Select Case InputProgramSection
 Case ProgramSection.Simulation
 DefaultBorderColour = Color.FromArgb(161, 213, 255)
 FocusedBorderColour = Color.FromArgb(0, 90, 194)
 Case ProgramSection.Test
 DefaultBorderColour = Color.FromArgb(255, 189, 189)
 FocusedBorderColour = Color.FromArgb(199, 0, 0)
 Case ProgramSection.MyProgress
 DefaultBorderColour = Color.FromArgb(189, 255, 189)
 FocusedBorderColour = Color.FromArgb(0, 128, 0)
 Case ProgramSection.Other

 End Select
 End Sub

 Public Function HandleInput()
 If Focused = True Then
 For Each Key In Main.KeysDown

 If Key >= 96 And Key <= 105 Then
 'If it's a number on the numPad, change the code so that it's the
same
 Key -= 48
 End If

 Select Case Key
 Case 13
 'Enter
 Focused = False
 If Text.Length > 0 Then
 Return "Entered"
 End If
 Case 27
 'Escape
 Text = ""
 Focused = False
 Case 48 To 57
 'Number
 If Text.Length < MaxChars Then
 Text &= Chr(Key)
 Else
 ReachedMaxChars = True
 End If
 Case 65 To 90
 'Letter
 If Text.Length < MaxChars Then
 If Windows.Forms.Form.ModifierKeys = Keys.Shift Then
 Text &= UCase(Chr(Key))
 Else

Mechanics Simulator 2014

Matthew Arnold 189 Candidate Number - 7061

 Text &= LCase(Chr(Key))
 End If
 Else
 ReachedMaxChars = True
 End If
 Case 8
 'Backspace
 If Text.Length > 0 Then
 Text = Text.Substring(0, Text.Length - 1)
 End If
 End Select

 Next
 End If

 If Text.Length < MaxChars Then
 ReachedMaxChars = False
 End If

 For Each Click In Main.MouseButtonsUp
 If Click.Button = MouseButtons.Left Then
 If Click.Location.X >= Location.X And Click.Location.X < Location.X +
Size.Width And Click.Location.Y >= Location.Y And Click.Location.Y < Location.Y +
Size.Height Then
 'Mouse up in text box
 Focused = True
 Else
 'Mouse up out of text box
 Focused = False
 End If
 End If
 Next

 Return ""
 End Function

 Public Sub Draw()
 'Draw Border
 If Focused = True Then
 Main.GFX.DrawRectangle(New Pen(New SolidBrush(FocusedBorderColour),
BorderThickness), Location.X, Location.Y, Size.Width, Size.Height)
 Else
 Main.GFX.DrawRectangle(New Pen(New SolidBrush(DefaultBorderColour),
BorderThickness), Location.X, Location.Y, Size.Width, Size.Height)
 End If
 'Draw Text
 If Focused = True And Now.Millisecond < 500 Then
 Main.GFX.DrawString(Text & "|", Font, Brushes.Black, New Point(Location.X
+ BorderThickness, Location.Y + BorderThickness))
 Else
 Main.GFX.DrawString(Text, Font, Brushes.Black, New Point(Location.X +
BorderThickness, Location.Y + BorderThickness))
 End If

 End Sub
End Class

Mechanics Simulator 2014

Matthew Arnold 190 Candidate Number - 7061

User Manual

I have created a User Guide for my program. It can be found at Appendix 1 at the end of this

document, on page 200.

Appraisal

Completion of Project Objectives

General Objectives

Below are the seven general objectives that I established before creating the program, along with a

brief description about whether or not I have met each objective.

1.
Create a VB.NET Windows Forms Application which could be used to help to teach
students Mechanics principles for the first time.

Objective
Met

One of the three main sections of my program is the Simulation section. This contains all
three Simulations completely unlocked. For each one, there are lots of variables which can
be changed before the Simulation is started. Changing these variables change the outcome
of the Simulation. This mode could be useful for teacher demonstrations, since the teacher
could set up a situation that they want the whole class to work with, and project it onto the
whiteboard.

2. The program should also act as an effective revision tool for students.

Objective
Met

The second section of the program is the Test section which is used (as the name suggests)
to test students’ performances in the different categories. Once the theory has been
learned, students could revise by practising on the questions in this section.

3. There should be at least one simulation about projectile motion.

Objective
Met

The image below shows the Simulation for Projectile Motion which I have created.

Mechanics Simulator 2014

Matthew Arnold 191 Candidate Number - 7061

4. There should be at least one simulation about resolving forces.

Objective
Met

The image below shows the Simulation for Resolving Forces which I have created.

5.
There should be at least one simulation about resolving forces at angles (“Stuff on
slopes”).

Objective
Met

The image below shows the Simulation for Forces On Slopes which I have created.

Mechanics Simulator 2014

Matthew Arnold 192 Candidate Number - 7061

6.
There should be a graphics system in place which ensures that the simulations run
smoothly without any flickering or ‘lag’ on an average machine.

Objective
Met

The conventional Windows Forms graphics method, of moving around pre-designed objects
from design view, updates the user’s view each time an object is moved. If an object is
moved very frequently, or if multiple objects are being moved at once, this is likely to cause
flickering. Conversely to this, with my graphics drawing method the user’s view isn’t
updated until all of the drawing for a cycle has finished. This single update is called a frame.
The image below shows that my program runs at 65fps (frames per second) while the
Projectile Motion Simulation runs, which is much more than the human eye can distinguish
between. That image was taken using one of the computers at college, which would be
expected to be used by students at college. Also, my graphics drawing system is also not so
complicated and intensive that it causes lag (unnaturally long pauses between screen
updates or input) due to too many calculations.

Mechanics Simulator 2014

Matthew Arnold 193 Candidate Number - 7061

7.

As well as the simulations the program should include a test mode, in which the user is
asked an exam-style question based on the starting condition of a prepared situation
before seeing a simulation that reveals the answer.

Objective
Met and

Exceeded

For each of the categories in the Simulation section of the program there is a corresponding
Test. The test consists of an exam-style question based on that category. There is a
Simulation next to the question which starts running as soon as the User finishes entering
answers to all parts of the question. The Simulation shows the outcome of the situation
described by the question.

This objective has been exceeded because the starting conditions (numbers in the
question) each Test question is randomly generated. This means that, although there are
only three Tests, there are thousands of unique possibilities.

Specific Objectives

Below are the eleven specific objectives that I established before creating the program, along with a

brief description about whether or not I have met each objective.

1.
In the test mode the questions asked should have a total mark and the user’s answers
should be marked as a percentage.

Objective
Met

After the Test has been completed and the Simulation has run, the Test Report screen is
shown. This shows the correct answers to the question. This screen adds up all of the marks
for each part of the question, and calculates a percentage score. See tests 10.1, 10.2 and
10.3 (starting on page 68) for the system tests of this feature.

2.
Each time a user answers a question in test mode, the score, date/time of answering and
question category should be saved in a text file.

Objective
Met

Test results are save in the format “Category,Score,TimeScored|”. This is important, as a
consistent format is needed for understanding the user data later. See system test series 5
(Page 52) and test 8.1 (Page 63) for evidence of the program correctly saving tests in this
format, and writing data to the text file.

Mechanics Simulator 2014

Matthew Arnold 194 Candidate Number - 7061

3.
Each user of the program on a machine should have their own progress text file assigned
to them. If a new user uses the program, a new text file should be created.

Objective
Met

A new text file is created each time someone creates a new User Profile. See system test
9.5 on page 64 for evidence of this working. Each text file is named using the format
“UserName.sv”. The “.sv” file extension hides the fact that it is a text file, and lets my
program distinguish it from an ordinary text file. This system is one reason why all User
Names on a machine need to be unique.

4.
A user should be able to view their progress over time with the test mode for any
particular question category. This could be displayed as a graph.

Objective
Met

The third and final main section of the program is the My Progress section. This is designed
for Users to review their performance in the Test section. The top half of the screen
displays statistics about their performance as a whole, and the bottom half displays a graph
showing information about individual categories. The graph shows the percentage score for
each test completed in a category in chronological order, and draws lines between these
data points. The buttons left of the graph can be clicked on to change the category
displayed on the graph.

5.

When the test mode or ‘My Progress’ is selected, a list of existing users should be
displayed. If the user has used the program on that machine before, they can select their
name from the list. If they are not on the list, there will be a text box for them to create a
new user name, thus creating a new progress text file.

Objective
Met

This has been exactly implemented. The image below shows the User Selection screen for
the Test section. The one for the My Progress section functions identically, except from it is
green and it points toward the My Progress Report screen and not the Tests Menu. The left
side of the screen contains a list of up to 42 existing User Names which is found by reading
the User text file directory. Clicking on one of the names will select it. The left side of the
screen is for creating a new User Name. This has various validation procedures which are
tested in system test series 9 (starting on page 64).

Mechanics Simulator 2014

Matthew Arnold 195 Candidate Number - 7061

6.
The simulations should be visually pre-set, but users should be able to input/alter
starting variables and constants before running the simulation.

Objective
Met

On each Simulation screen, the first frame of the animation is presented immediately, and
the situation for each one is always the same. For example, the Projectile Motion
Simulation (pictured below) will always involve a ball being fired towards a wall with a gap
in it and the Resolving Forces Simulation will always involve two masses connected by a
string over a pulley. However, the important variables which affect the exact outcome of
the Simulation (e.g. Mass, initial velocity or angles) can be changed before the Simulation
starts running. On each Simulation, a variable text box which has a thinner border is one for
a variable which can be viewed as it changes, but not altered, like time.

7. Simulations should be able to be paused at any time.

Objective
Met

Each Simulation has a big, easy to see Pause button which will instantly pause the running
of the Simulation once clicked. This could be used for viewing the values of variables at a
particular time. The Simulation can easily be resumed by clicking the Play button.

Mechanics Simulator 2014

Matthew Arnold 196 Candidate Number - 7061

8.

There should be keyboard bindings to the simulation play, pause and reset functions. For
example, the user could press the space bar to pause the simulation. This would make
those functions easier to use, and gives an alternative to clicking with the mouse.

Objective
Partially

Met

There is a keyboard binding: when the Space Bar is pressed, the running of the Simulation is
toggle on or off. So, if the Space Bar is pressed while the Simulation is running, it will be
paused. If the Space Bar is pressed when the Simulation is paused, it will continue to run.
However, there is not keyboard shortcut for resetting the Simulation, although this would
be fairly easy to implement.

9.

I will need to be able to use traditional SI units for quantities, such as “metres per
second” for velocity, rather than “pixels per tick”. For this reason, I will create a method
for converting between the pixel and metre forms.

Objective
Met

For each Simulation, I have functions for converting between pixels and metres. The code
for these is shown below. These functions make use of a variable called Scale. This is a
value which represents the number of pixels per metre. The scale value can be set by
knowing what a set distance needs to be, in metres, given that you know its distance on the
screen, in pixels. For example, in the Projectile Motion Simulation, it is known that the pixel
distance between the initial ball position and the wall is 550px. To get a value for scale, the
program finds out what the horizontal distance needs to be in metres (either by user input,
or generated by a Test) and does the calculation 550/MetreDistance. A similar method is
used for the other two Simulations.

 Public Function Metres(ByVal Pixels As Double) As Double
 Return Pixels / Scale
 End Function

 Public Function Pixels(ByVal Metres As Double) As Double
 Return Metres * Scale
 End Function

10.

On the menu for selecting simulations, there should be an image previewing each
simulation. This would make the program look more interesting, as well as giving the user
a taster of each simulation before needing to run them.

Objective
Met and

Exceeded

The image below shows the Simulations Menu. There are three big buttons down the left
side, one for selecting each Simulation. When the mouse cursor is hovered over one of
these buttons, a preview for the corresponding Simulation is shown on the right side of the
screen. This preview involves a brief description, the Simulation title, and not just an image,
but and animation sample. This animation is made by running the actual Simulation with
some set initial conditions. The Simulation is drawn to the screen half-sized.

Mechanics Simulator 2014

Matthew Arnold 197 Candidate Number - 7061

11.
Each user’s progress data string should be encrypted before being written to file, to
prevent users from cheating by altering their scores.

Objective
Met

I have created functions for encrypting and decrypting strings and I use this to secure user
data before saving it to their text files. A detailed explanation of these functions can be
found in the System Maintenance section, on page 85, and evidence of them working can
be found in system test series 7, starting on page 56.

Evidence of Authenticated User Feedback
Below are the E-mails sent by my end user as feedback after I sent him the finished program.

Mechanics Simulator 2014

Matthew Arnold 198 Candidate Number - 7061

Analysis of User Feedback
I have read through my User’s feedback and condensed it into a table of positive feedback, negative

feedback and possible improvements.

Positive Negative Improvements

User Friendly Easy to accidentally click the
settings button instead of the
menu button

Remove settings button from
unnecessary places

Visually Pleasing Tests are not difficult enough
compared to some exam
questions

Add a pop up for the Simulations
showing some of the theory
associated with that topic

The Simulations showed what was
going on well

It seems unnecessary to click lots
of buttons to have to exit the
program

Allow the Simulation to pause
when important events happen

Tests were well thought-out Add a new simulation where there
are forces at angles on an object
on a slope

Useful to be able to track progress Add an exit button everywhere

My User liked how nice the program looked and how the Simulations showed the situation clearly. I

think that this is due to my graphics drawing method, as I can make many different shapes. He also

said that the program was easy to use, which I think is partly down to the buttons being large,

obvious and consistent.

However, he thought that there were too many buttons pointing to the settings screen and this

caused him to accidentally click that button when wanting to click the “back to menu” button. There

are even settings buttons on each simulation and test. This is unnecessary because none of the

program settings affect those screens.

Mechanics Simulator 2014

Matthew Arnold 199 Candidate Number - 7061

Possible Extensions
After analysing my User feedback, I have made a list of possible future improvements which I could

implement into the program if I had more time:

1. Remove the Settings Buttons from all screens except the title screen. The settings screen is

not needed enough to warrant having a button to it on almost every screen. Not only are the

buttons not needed, but they take up space and make screens more confusing

2. Add an option to each Simulation to pause it when it is “finished”. A Simulation could be

classed as finished when the main event has stopped happening. Each existing Simulation

could be finished when:

a. Projectile Motion: The ball reaches the wall

b. Resolving Forces: The second mass hits the floor, and the system stops moving

c. Forces On Slopes: The block hits the wall

3. Add a button which is always visible for exiting the program. This could be put on the border

of the main program window.

4. On all Simulations, add a help button which brings up a pop-up. This would show the

Mechanics theory associated with the topic of the Simulation. For example, for Projectile

Motion it could show some of the equations of motion which are used for the Simulation.

This feature would make the system easier to learn from

5. An obvious improvement would be to add more situations for Simulations and Tests. This

would make the program useful for more than just three sub-topics of Mechanics. My User

suggested a situation similar to the Forces On Slopes one, but with a force acting on the

block at an angle. This would be a more difficult situation to deal with and would make the

program reach the highest difficulty possible for actual exams.

Mechanics Simulator 2014

Matthew Arnold 200 Candidate Number - 7061

Appendices

Appendix 1 – User Guide
Starting on the next page is the User guide for my program.

