
Matthew Arnold

An investigation into selected

segmentation-derived techniques for

image quality assessment

Computer Science Tripos – Part II

Sidney Sussex College

May 18, 2017

Proforma

Name: Matthew Arnold

College: Sidney Sussex College

Project Title: An investigation into selected segmentation-derived

techniques for image quality assessment

Examination: Computer Science Tripos – Part II, July 2017

Word Count: 11,7851

Project Originator: Mr Matthew Arnold

Supervisor: Mr Matthew Ireland

Original Aims of the Project

To create a GUI that sorted images by a weighted combination of hand-crafted extracted

features (two high-level segmentation-derived features and two simple low-level features

as core, with further features as extensions). Weights were to be chosen by the user. A

segmentation algorithm was to be selected and implemented as a base for the high-level

features, using saliency information for identifying subjects.

A numerical evaluation of my segmentation implementation was to be carried out, as well

as a human evaluation. The principal aim of the user study was to compare the usefulness

of the segmentation-derived features with the others.

Work Completed

All core success criteria from the Proposal were completed, as well as many extra goals.

After a thorough research phase, the segmentation algorithm was chosen and implemented.

Eight image feature extractors (4 high-level and 4 low-level) were implemented, and fea-

ture values were combined with GUI user input using an efficient and optimised tool.

1This word count was computed using the TeXcount web service: http://app.uio.no/ifi/

texcount/online.php

i

http://app.uio.no/ifi/texcount/online.php
http://app.uio.no/ifi/texcount/online.php

My segmentation implementation was measured against other algorithms using the Berke-

ley Segmentation Dataset, and the improvement gained from augmenting the segmenta-

tion with saliency information was quantified. A statistical, quantitative and qualitative

evaluation of the tool and implemented features was also carried out, including a user

study.

Special Difficulties

None.

ii

Declaration

I, Matthew Arnold of Sidney Sussex College, being a candidate for Part II of the Computer

Science Tripos, hereby declare that this dissertation and the work described in it are my

own work, unaided except as may be specified below, and that the dissertation does not

contain material that has already been used to any substantial extent for a comparable

purpose.

Signed: Matthew Arnold

Date: May 18, 2017

iii

iv

Contents

1 Introduction 1

1.1 Motivation . 2

1.2 Background . 2

1.3 Related Work . 4

1.4 Context of the Work . 4

1.5 Overview of the Dissertation . 4

2 Preparation 5

2.1 Starting Point . 5

2.2 Summary of the Research Phase . 6

2.2.1 Feature-based vs AI approach . 6

2.2.2 Segmentation Algorithm Choice . 6

2.2.3 Saliency . 9

2.2.4 Chosen Features . 10

2.3 Libraries and Tools . 12

2.4 Requirements Analysis . 13

2.5 Software Engineering Strategy . 13

2.6 Planned vs Actual Work Done . 14

3 Implementation 17

3.1 Multi-threaded Feature Computer . 19

3.2 Segmentation and Saliency Segmentation 21

3.2.1 Graph-based Image Segmentation 21

3.2.2 Pixel Difference Metric . 26

3.2.3 Adding Saliency Information . 28

3.2.4 Choosing the Segmentation Parameters 32

3.3 Computing High-level Image Features . 33

3.3.1 Rule of Thirds . 34

3.3.2 Subject(s) Size . 36

3.3.3 Background Distraction . 36

3.3.4 Shape Convexity . 40

3.4 Computing Low-level Features . 42

3.4.1 Blurriness . 42

3.4.2 Brightness . 45

v

3.4.3 Intensity Contrast . 48

3.4.4 Saturation . 50

3.5 User Interface . 50

3.5.1 Efficient Interface . 51

3.5.2 Intuitive Interface . 51

3.5.3 Model-View-ViewModel . 52

3.6 Optimisations . 53

3.6.1 Storing feature values for re-use . 53

3.6.2 Detecting slow code in the segmentation implementation 56

3.7 Testing and Debugging . 57

4 Evaluation 61

4.1 List of Objectives . 62

4.2 Segmentation Evaluation . 62

4.3 Human Evaluation . 65

4.3.1 Evaluation Structure . 65

4.3.2 Speed of Sorting . 67

4.3.3 Hypothesis Testing . 67

4.4 Individual Features Evaluation . 71

4.5 Discussion . 71

4.5.1 Which features are best? . 71

4.5.2 User Feedback . 72

4.5.3 Subjects vs Landscapes . 74

4.5.4 What’s missing? . 74

5 Conclusions 79

5.1 Reflections . 79

5.2 Future Work . 80

5.3 Final words . 80

Bibliography 80

A Preparation Task List 83

B Hypothesis Testing 85

C Project Proposal 91

C.1 Introduction . 91

C.2 Starting point . 93

C.3 Substance and Structure of the Project . 93

C.4 Success citeria . 95

C.4.1 Core . 95

C.4.2 Extensions . 95

C.5 Plan of Work (Timetable and Milestones) 95

C.6 Resource Declaration . 98

vi

List of Figures

1.1 Example of segmentation and saliency segmentation 3

2.1 Comparison of Segmentation Algorithms 7

2.2 Drawback of purely global segmentation algorithms 8

2.3 Chosen segmentation algorithm satisfies global properties 9

2.4 Saliency map and saliency segmentation example 10

2.5 Images with low and high feature values 11

2.6 Planned vs Actual Gantt Chart . 15

2.7 Git commits to master . 15

3.1 User Interface . 18

3.2 Multi-threaded Feature Computer . 18

3.3 Computing Image Feature Values . 18

3.4 Saliency Segmentation . 18

3.5 Duplicate of Figure 3.2 . 19

3.6 Graph showing speed gained from multi-threading 20

3.7 Saliency Segmentation (Repeated) . 21

3.8 Segmentation algorithm graph structure 22

3.9 Disjoint Set Added Code . 23

3.10 Segmentation merge step . 24

3.11 Visualisation of the runtime of the segmentation algorithm 25

3.12 Segmentation final graph state . 26

3.13 Negative effect of image compression on segmentation 27

3.14 How intensity as a pixel difference metric fails 28

3.15 Comparison of pixel difference metrics . 29

3.16 Comparison of pixel difference metrics (Random segment colouring) 30

3.17 Saliency map and saliency segmentation example 31

3.18 Saliency segmentation helps with compression artefacts 31

3.19 Ignoring segments smaller than 1% of the image 32

3.20 Changing the segmentation parameters . 32

3.21 Computing Image Feature Values (Repeated) 33

3.22 1:1 centre-crop for Blurriness . 34

3.23 Large segments being “close” to power points 35

3.24 Segment spread . 36

3.25 Comparison of Rule of Thirds feature value definitions 37

vii

3.26 Computing Rule of Thirds: Step-by-step 38

3.27 Computing Subject(s) Size: Step-by-step 38

3.28 4096 possible colors after the quantisation step 39

3.29 Example of an image with a non-distracting background 40

3.30 Example of an image with a distracting background 41

3.31 Computing Shape Convexity: Step-by-step 43

3.32 2DFT Plane Waves . 44

3.33 Blurriness feature region of the DFT magnitude plot 45

3.34 Assumed periodicity of the DFT for image data 46

3.35 2DFT Example 1 . 46

3.36 2DFT Example 2 . 47

3.37 2DFT Example 3 . 47

3.38 Converting to greyscale . 48

3.39 Computing Intensity Contrast: Step-by-step 49

3.40 Computing Saturation . 50

3.41 User Interface (Repeated) . 50

3.42 Efficient Interface . 51

3.43 Intuitive Interface . 52

3.44 Model-View-ViewModel Pattern . 53

3.45 Exif metadata viewer . 54

3.46 Graph showing speed gained from pre-computing features 55

3.47 ImageFeatureVector Byte Array Representation 56

3.48 Performance Analysis . 56

3.49 Low-level Feature Testing . 58

3.50 High-level Feature Testing . 59

4.1 Berkeley Segmentation Dataset Example 63

4.2 Generated Edge Map Example . 64

4.3 Segmentation Evaluation Histograms . 66

4.4 Speed of Sorting . 68

4.5 Bad Saliency Segmentations . 75

4.6 Outlier Images . 76

4.7 Segmentation Error Outliers . 77

4.8 Missing Information Outliers . 78

C.1 Human-annotated segmentation from the Berkeley Segmentation Dataset . 94

viii

List of Tables

2.1 Difficulty and Risk of Implementation Tasks 13

3.1 Segmentation Parameter Sweep results . 33

4.1 Average segmentation accuracies . 65

4.2 Participant Photography Experience . 67

4.3 Grid of individual feature pair-wise correlations 70

4.4 Total absolute inter-feature correlation . 70

4.5 Feature Popularity Analysis . 72

4.6 Efficient Happiness . 73

4.7 Method of preference . 73

A.1 Difficulty and Risk of Implementation Tasks 84

ix

Acknowledgements

I would like to express my gratitude to Matthew Ireland, my project supervisor, whose

guidance and enthusiasm throughout was greatly appreciated.

Thanks are also due to those who gave up some of their time to participate in my user

study for free.

x

Chapter 1

Introduction

I created and evaluated a tool that assists humans in sorting photographs using their

personal subjective preferences. No objective quality metric is assumed; what one human

judges as a “good” photograph may not appeal to another. The tool extracts a set of

pre-defined features, and ranks the images by their weighted sum. The weights applied

to each feature may be adjusted by the user. This personalises the ranking according to

their own interpretation of what makes an aesthetically pleasing image.

The results showed with high statistical significance that the tool’s ordering correlated

with subjective human rankings. Users preferred to sort images using my tool over the

alternative manual approach, and the tool significantly sped up the task. The improve-

ment in accuracy resulting from enabling the “high-level”, segmentation-derived features

was not found to be statistically significant. Nevertheless, study participants indicated

that such features were required in order to extract the essence of a “good” image.

1

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

A tool for subjective image sorting has many use-cases:

• A nature photographer takes many hundreds of photographs, most of which are

out-of-focus or poorly-framed. They wish to select their favourite few to submit for

a competition.

• An event photographer needs to rapidly upload photographs to social media.

Blurry or under-exposed photographs need to be quickly deselected. Such a tool

could automatically select the best image as the “album cover”.

• A holiday maker wishes to show highlights of their trip. The task of manually

sorting their thousands of images is daunting; it would take too long.

• A magazine editor is tasked with finding an image that suits a particular article.

For example, they might be looking for a bright photograph with a large subject.

Were any of these users able to generate a subjective sorting, their task would be reduced

to selecting a top sub-list. Such a generation is infeasible without assistance from an

automated tool: the human would require up to 1
2
n(n − 1) image comparisons1 to rank

n images. As this is quadratic in n, the task would take too long for a realistic dataset.

Furthermore, the human will lose concentration or forget about images during the task,

resulting in an inconsistent sorting.

The proposed tool could determine the user’s individual preferences without them having

to do so much work. Once the tool has this information, it could automatically sort

the images and then be re-used to sort further similar sets of images without requiring

more input from the user. This project explores certain techniques for extracting such

preference information efficiently enough to speed up the sorting process.

From my investigations, there exists no accessible open source tool to do this. The many

websites and tools that claim to assist in photograph organisation only use the image

metadata (tags such as GPS-location and time-of-capture). In contrast, this project

extracts both global and compositional features from the raw pixel data to discriminate

quality, then combines this with user preference input to sort the images aesthetically.

1.2 Background

This project has roots in the field of aesthetic image quality analysis, a subtopic of Com-

puter Vision concerned with evaluating how beautiful images are to humans. The task

addressed by the project is a specific one within this underlying field, with emphasis on

leaving the subjectivity with the humans that create it.

1n− 1 pairs from the first image, then n− 2 from the second etc. This is a sum from 1 to n− 1.

1.2. BACKGROUND 3

Original Image Segmented Image

Figure 1.1: Example of segmenting an image.

Arguably the “holy grail” problem of Computer Vision is that of general object recogni-

tion. It is something that humans do with minimal effort and yet we have little cognitive

penetrance of the task. We use past experiences to recognise or try to understand the

salient objects and scenes, and use multiple contexts to form an aesthetic opinion. There-

fore it makes sense to mimic this object recognition process when trying to automate the

analysis of “image quality”. However, since general object recognition is hypothesised to

be AI-complete2, it must be approximated. This project performs such an approximation

by segmenting the image and uses the resulting segmentation to analyse properties of the

image subjects.

Segmentation is a non-linear operation that extracts meaningful symbols corresponding

to the structures and objects in an image. Figure 1.1 shows an example of this ab-

straction. Humans see an image rich in meaning, whereas computers have only raw data.

Segmentation takes this raw data and automatically approximates the high-level symbols.

Throughout this dissertation there is a distinction between “high-level” and “low-level”

image properties. High-level properties are those that incorporate top-down contextual

information about the image. A feature which is derived from an image’s segmentation

is classed as high-level since it has access to approximations for the positions, sizes, and

colours of different objects in the image. Conversely, low-level properties are relatively

simple and operate on a pixel-by-pixel basis. They infer global characteristics of the image

using linear transformations on the pixel data.

High-level features correspond to human analysis of the salient objects. They allow ex-

traction of information about complicated things like scene composition. This is not to

say that humans do not consider ideas similar to low-level features when judging image

quality. For example, a human certainly could dislike an image because it is too bright.

A combination of the two types should be needed to capture more about the aesthetic

image quality.

2Currently can only be solved by a human or with the assistance of humans.

4 CHAPTER 1. INTRODUCTION

1.3 Related Work

Early work in aesthetic image analysis used biological properties of the human visual

system to reason about how people react to certain image transformations [21]. More

recently, the focus shifted to aesthetic judgement using perceptual factors, such as Aydin

et al. in 2015 [4]. Ke et al. [12] and Luo & Tang [15] treat this as a binary classification

problem, deciding between “professional” photographs and “snapshots”.

Yeh et al. [22] use a semi-automated feature-based ranking approach. They proposed a

set of features and learn associated weights for these features, before allowing the user

to adjust these weights to rank the images based on their personal preference. Datta et

al. [8] use a purely machine learning approach, using hand-crafted features as input to

their classification algorithm.

In 2015, Lu et al. [14] moved away from hand-crafted features, instead using a deep

convolutional neural network, which was made feasible by their 1.5 million-image dataset

annotated by online rankings. It analysed both local and global stylistic and semantic

image attributes. Although they achieve high accuracy, the system can only learn the

preferences of an average human, ignoring subjective differences between individuals.

1.4 Context of the Work

This project uses the feature-based approach of Yeh et al. [22], a core paper that was

the foundation for later work in the field. Their approach is sensible because they allow

users to adjust feature weightings, leaving subjectivity with humans. My approach differs

in that I rely on humans more by not using machine learning as a baseline for weight

selection.

My project explores many of their assumptions in more detail, in particular the choice

of segmentation algorithm and associated parameters. The project augments their idea

with additional features such as Shape Convexity, inspired by Datta et al. [8].

I avoid a machine learning approach since a particular person’s favourite photographs

may not align with the average of the image ratings used to annotate the training dataset.

These preferences will likely change over time for the same person.

1.5 Overview of the Dissertation

First, the choices made during the research phase are summarised in Chapter 2. Chapter

3 discusses the implementation of segmentation, feature extraction, feature processing,

and the structure of the tool. The quantitative and qualitative results are presented in

Chapter 4, and Chapter 5 gives the final conclusions.

Chapter 2

Preparation

2.1 Starting Point

I attended the Part IB Computer Graphics and Image Processing course, and took the

Part II Computer Vision course this year (although this did not begin until Lent term).

I had not used C# before, which was chosen as the programming language. I have not

had previous experience of implementing image processing algorithms.

5

6 CHAPTER 2. PREPARATION

2.2 Summary of the Research Phase

2.2.1 Feature-based vs AI approach

I chose to use the hand-crafted feature-based approach of Yeh et al. [22].

The alternative (machine learning) approach uses a large set of annotated images to

“learn” what makes certain photographs more aesthetically pleasing than others. The

fundamental disadvantage of this approach is that such a system would only learn the

preferences of the particular humans who annotated the set. In this project, I found that

peoples’ manual sortings of a set of images differed significantly.

Even if this group of people is large, individuals’ preferences do not necessarily align with

the average of the group. It is this average that is learned by the algorithm. This issue

could be avoided by training the machine learning algorithm separately for every user,

but that would require each user to first annotate a much larger set of images than those

they were interested in sorting.

Furthermore, it is unclear how well the AI approach generalises to new kinds of image.

Aesthetic quality factors may differ between different types of images, for example those

with well-defined subjects, those with landscapes or those with people.

2.2.2 Segmentation Algorithm Choice

Image segmentation is required for the high-level, compositional features in order to ap-

proximate the object detection process in the human visual system. Ideally, each “object”

in the image will be abstracted to its own segment, and one or more will correspond to

the image “subject(s)”. A careful choice of segmentation algorithm is essential, since it

underlies all of the high-level features. Figure 2.1 compares a selection of possibilities.

The simplest segmentation algorithms use Histogram Thresholding techniques. These

construct a histogram (with a bin for each possible pixel intensity) and determine a

threshold intensity by which to partition the pixels. These were discounted due to the

binary classification, the fact that they discard all spatial information (leading to non-

contiguous segments), and because it is difficult to extend them to use more than one

colour channel. Furthermore, they are extremely sensitive to noise, commonly resulting

from smartphone cameras.

Colour information is more easily used by applying clustering algorithms to the task,

for example K-means, which groups pixels into a fixed number of classes, k, based on

their relative distances in some Euclidean space (Figure 2.1 uses RGB squared distance).

K-means was discounted because the number of segments in each image is initially un-

known and the cluster centres are randomly seeded, meaning results change between runs.

Further down the pipeline, this could affect feature values and therefore image sortings

between runs.

2.2. SUMMARY OF THE RESEARCH PHASE 7

Original Balanced Histogram Maximum Entropy Otsu

Binary

Thresholding

Only two segments

and operates on

greyscale image

Original k = 2 k = 4 k = 7

K-Means

Cliff and sky is

in same segment

as parts of boat

Original k = 25 k = 125 k = 500

Modified GBIS:

Felzenszwalb &

Huttenlocher [9]

Parameter choice

is important

Original Segmentation

gPb-owt-ucm:

Arbelaez et al. [3]

State-of-the-art

Figure 2.1: Possible choices of segmentation algorithm. The chosen algorithm is high-

lighted in green.

8 CHAPTER 2. PREPARATION

Original K-Means (k = 5) Chosen Algorithm (k = 125)

Figure 2.2: K-Means assigns the flowers to the same segment. The chosen algorithm

separates individual flowers.

Thresholding and clustering have only a global image view, resulting in non-contiguous

segments; Figure 2.2 gives an example. The high-level features need to reason about the

positions and sizes of objects, so it is important to have contiguous segments.

Graph-based segmentation algorithms take an opposite, bottom-up approach, treating

the image as a graph. There is a vertex for each pixel, and undirected edges form a

mesh (called a grid-graph). Edge-weights correspond to pixel difference, and regions are

grown from single pixels, with more pixels being added to a region if the difference at

the boundary is small enough. Region-growing algorithms are less affected by intensity

inhomogeneity than thresholding: a problem for MRI segmentation [20] which causes

image objects to be split in half. It would make it difficult to reason about the sizes or

positions of objects in the proposed tool. Region-growing is discounted, however, since it

only has a local view of the data.

The best algorithms include a global view/criteria when deciding on a segmentation, in

addition to looking at local spatial data. Shi & Malik [18] proposed “Normalized Cuts”,

which minimises pixel difference within segments, and simultaneously maximises difference

between segments. However, this solution is NP-complete, and approximations to it are

complicated, slow and inconsistent.

Amongst the state-of-the-art in image segmentation is gPb-owt-ucm by Arbelaez et al. [3].

This is a hierarchical combination of: the Oriented Watershed Transform for segmenta-

tion; the Global Probability of Boundary advanced contour detection; and the Ultrametric

Contour Map. Although the algorithm produces excellent results, it is a complicated

amalgamation of much work from the Berkeley Vision group, which I would not have had

time to understand or implement myself in the planned time-scale. There is an avail-

able implementation, but it would be difficult to interface with my chosen programming

language, and it runs slower without GPU parallelism.

The chosen algorithm, by Felzenszwalb & Huttenlocher [9], is an extension of Kruskal’s

greedy Minimum-Spanning-Tree-finding algorithm [13]. In Kruskal’s, edges from the

sorted edge list are considered in a non-decreasing order, and added to the MST if they

do not introduce a cycle. Felzenszwalb & Huttenlocher add the adaptive global criterion

2.2. SUMMARY OF THE RESEARCH PHASE 9

Original Segmentation with chosen algorithm

Figure 2.3: These three perceptually distinct regions could not be isolated with only a

local view. The chosen algorithm can pick out regions of high-variability, regions of no

variability, and regions of constant variability.

that the edge is only added if the two segments it connects are “similar enough” compared

to the variability within them, which merges those segments. Because of this criterion,

Felzenszwalb & Huttenlocher proved that “although this algorithm makes greedy deci-

sions it produces segmentations that satisfy global properties”, which are illustrated in

Figure 2.3. It is these global properties, combined with computational tractability, that

make this my chosen algorithm. The result is not an MST, but a mutually-spanning forest

of trees, each of which corresponding to a segment.

Apart from having been used in image quality analysis by Yeh et al. [22], the chosen algo-

rithm has been used for many other applications, including Video Segmentation (Grund-

mann et al. [10]) and 3D Image Structure Learning (Saxena et al. [16]).

2.2.3 Saliency

Having computed the segmentation, the subject(s) of the image need to be identified.

When looking at an image, humans are immediately drawn to the regions that stand out

the most. Saliency is a measure that attempts to identify these regions.

There is a vast body of research into saliency metrics for the purpose of object recognition

and segmentation. AI techniques generally yield the best results, but are specific to a

particular family of image. I instead opted for Achanta et al.’s saliency map [1] because

it has the desired generality and is perceptually defined.

Each pixel is given a salience value according to the Euclidean distance

S(x, y) = || Iµ − Iσ(x, y) || (2.1)

where Iµ is the average CIELAB colour of the image, and Iσ is the Gaussian-blurred input

image. A pixel has a higher saliency if its colour is more different from the average. Since

the CIELAB-space was derived using human perception experiments, this saliency map

approximates the way humans identify regions that stand out to them the most.

10 CHAPTER 2. PREPARATION

Original Segmentation Saliency Map Saliency Segmentation

Figure 2.4: The segmentation algorithm can only partition the image, but the saliency

segmentation approximates which regions correspond to image subjects.

Image subjects are found by looking at which regions from the segmentation have high

average salience, as exemplified in Figure 2.4.

2.2.4 Chosen Features

Figure 2.5 gives examples of high and low feature-valued images for each of the chosen

features.

High-level features extract compositional information about the subject(s) of the image.

The reason for choosing this particular set is that, between all of them, all pixels in the

image are considered and analysed at a high level; the size, position, and shape of the

subject(s) is quantified.

1. Subject(s) Size (CORE TASK)

Yeh et al. [22] suggest that the size of the subject can discriminate image quality;

some people prefer large subjects, whereas others prefer small ones. The feature

draws bounding boxes around the subjects, and computes the fraction of the image

taken up by them.

2. Rule of Thirds (CORE TASK)

There is a photography rule-of-thumb which says that subjects should be close to

the intersections of third-lines of the image, called power points. Modified from Yeh

et al. [22], this feature computes a weighted sum of the segments, weighted by size,

saliency, and distance to the closest power point.

3. Shape Convexity (EXTENSION TASK)

Research by Vartanian et al. showed that “participants were more likely to judge

spaces as beautiful if they were curvilinear than rectilinear” [19], and neuroscientists

at Johns Hopkins University found people “like shapes with gentle curves as opposed

to sharp points.”1. Heavily modified from Datta et al. [8], this feature works out

which of the subjects are like convex objects (no jagged edges or structure). It then

quantifies how circular these salient, convex segments are.

1Study outlined at http://www.smithsonianmag.com/science-nature/do-our-brain...

http://www.smithsonianmag.com/science-nature/do-our-brains-find-certain-shapes-more-attractive-than-others-180947692/

2.2. SUMMARY OF THE RESEARCH PHASE 11

Low-level

Low Brightness High Brightness Low Contrast High Contrast

Low Saturation High Saturation Low Blurriness High Blurriness

High-level

Low Rule of Thirds High Rule of Thirds Low Subject Size High Subject Size

Low Shape Convexity High Shape Convexity Simple Background Distracting Background

Figure 2.5: Images with low and high feature values

12 CHAPTER 2. PREPARATION

4. Background Distraction (EXTENSION TASK)

Luo et al. [15] hypothesise that “simple” images are more appealing. This feature

uses everything in the image not considered to be a subject: it computes how “busy”

the background is by counting the number of different colours in it.

The low-level features are simpler, pixel-wise metrics, of which I chose four. These sorts

of features commonly appear in the literature:

1. Brightness (CORE TASK)

The average intensity of the image. Relating back to a potential application use-

case, a magazine editor may need brightness to correctly set the atmosphere for

their article image.

2. Intensity Contrast (CORE TASK)

Also known as Weber contrast, this is the average absolute difference from the mean

image intensity.

3. Saturation (EXTENSION TASK)

The average HSV saturation of all pixels in the image. Saturation is a measure of

how “colourful” a colour is.

4. Blurriness (EXTENSION TASK)

An analysis of the frequencies present in the image. This uses the 2DFT.

2.3 Libraries and Tools

Throughout the project I made effective use of libraries and tools where appropriate:

• The standard libraries with the chosen programming language, C#.NET, make

image/file handling simple, with no need to write or find low-level graphics packages.

• Windows Presentation Foundation (WPF) was used to easily create Windows GUIs

using the MVVM pattern.

• Git for version control, which integrates well with Visual Studio. The Feature

Branch Workflow was used: new features were created on separate branches, such

as feature/newFeature. The testing/newFeature branch would be used for test-

ing. After implementation and testing, changes were merged back to the master

branch.

• The Berkeley Segmentation Dataset contains human segmentations of many images

[2]. It was used to perform a numerical evaluation of my segmentation implemen-

tation.

• RGB↔ CIELAB conversions and Gaussian blurring used the .NET Image Library2.

Colour-space conversions are non-linear transformations which are highly prone to

implementation error. It therefore made sense to use an existing implementation.

2https://github.com/fschultz/NetImageLibrary

https://github.com/fschultz/NetImageLibrary

2.4. REQUIREMENTS ANALYSIS 13

• The Blurriness feature uses a Cooley-Tukey library3 for the standard 2DFT.

• To compute convex hulls for the Shape Convexity feature, I used the MIConvexHull

library4, since it is an already solved problem with optimised solutions (Part IA

Algorithms Course).

• For storing images in memory, .NET’s Bitmap class has slow pixel read/write access

due to locking memory. Since I never access the same image in multiple threads, I

used the DirectBitmap5 wrapper class to bypass locking/unlocking.

2.4 Requirements Analysis

As required by the Agile project strategy, I made a chronological list of implementation

tasks to complete. It is summarised in Table 2.1, but the full list is in Appendix A.

Low Risk Moderate Risk High Risk

Low Difficulty

– Saliency Augmentation

– Subject(s) Size

– Brightness

– Intensity Contrast

– Saturation

Moderate Difficulty – Background Distraction

– Rule of Thirds

– Blurriness

– Exif Metadata

High Difficulty
– Segmentation

– Efficient Interface

– Shape Convexity

– Intuitive Interface

Table 2.1: Implementation tasks organised by difficulty and risk (core first, and exten-

sions later, time-permitting)

2.5 Software Engineering Strategy

I adopted the Agile software engineering framework for my project: I had two-week sprints

with regular supervisor meetings. Usually, end-of-sprint meetings involved checking a

deliverable or milestone, for example the completion of a new feature’s implementation and

testing. During the meetings, my supervisor and I did code reviews of important modules

(and research summaries during the research phase). The Agile approach suited my

project well, since I could mostly break the workload down into separately implementable

and testable modules, such as individual features, or phases of evaluation.

3https://www.codeproject.com/kb/gdi/fft.aspx
4https://github.com/DesignEngrLab/MIConvexHull
5http://stackoverflow.com/questions/24701703/c-sharp-faster-altern...

https://www.codeproject.com/kb/gdi/fft.aspx
https://github.com/DesignEngrLab/MIConvexHull
http://stackoverflow.com/questions/24701703/c-sharp-faster-alternatives-to-setpixel-and-getpixel-for-bitmaps-for-windows-f

14 CHAPTER 2. PREPARATION

I have made my code open-source, so that others may use and/or contribute to it6. I have

not included proprietary libraries, and have documented my code so that it may be easily

understood by others. Furthermore, I have tried to keep to C#.NET code conventions.

Initially, I did not know these, since the language was new to me. However, the Visual

Studio plugin called ReSharper was used to warn when code conventions were broken. Not

only did this make my code cleaner and consistent, but it taught me many conventions,

which will be useful for future projects in the language.

2.6 Planned vs Actual Work Done

Figure 2.6 gives a detailed breakdown of actual work done compared with the planned

work blocks in the Project Proposal. The green section over Christmas was for testing

the implementation, creating an optimised feature computer structure that was multi-

threaded, and saving computed image feature values in JPEG Exif metadata for near-

instant re-use. This section was added during the research phase, since I had not realised

its importance at the time of writing the proposal.

Figure 2.7 shows the master branch git commit history for the project. The first commit

was on the 13th November 2016, and the latest was on the 5th March 2017.

6https://github.com/matwx/Part2Project

https://github.com/matwx/Part2Project

2.6. PLANNED VS ACTUAL WORK DONE 15

Michaelmas Term Christmas Vacation Lent Term Easter Vacation Easter Term
W1&2 W3&4 W5&6 W7&8 W1&2 W3,4&5 W6&7 W1&2 W3&4 W5&6 W7&8 W1&2 W3&4 W5&6 W1&2 W3

1: Phase 1 Report
Actual Block 1 Key

2: Research Phase Planned Work
Actual Block 2 Actual Work

3: Segmentation Alg. Unplanned Work
Actual Block 3

4: Saliency & RoT
Actual Block 4

5: Rest of Features
Actual Block 5

SLACK

6: GUI Multi-threading, Exif,
Actual Block 6 Parameter Sweeps,

7: Plan Eval & Prog. Report Memory leaks
Actual Block 7 Allowed more data to come in even

8: Carry out Evaluation after preliminary analysis
Actual Block 8

9: Diss Imp. Draft
Actual Block 9

10: Diss Int.&Prep. Draft Re-ordered diss
Actual Block 10 chapter completion

11: Diss Eval.&Conc. Draft
Actual Block 11

12: Diss First Draft
Actual Block 12

13: Diss Finalise
Actual Block 13

SLACK Deadline

Figure 2.6: Gantt Chart showing planned vs actual work done

December 2017 February March April
0

2

4

6

8

10

C
om

m
it

s
to

 m
as

te
r

GUI & EvaluationMain Implementation

Time since project start

Figure 2.7: Git commits to master branch during the project

16 CHAPTER 2. PREPARATION

Chapter 3

Implementation

This chapter is guided by the diagrams on the next page (Figures 3.1-3.4). The first

depicts the overall tool architecture, and each successive diagram zooms in on the most

important part of the last.

The efficient, multi-threaded feature computer architecture is first described, followed by

the saliency segmentation implementation, then the features themselves, and finally the

user interface. This chapter ends with a discussion of optimisations, the feature testing

strategy, and some interesting bugs.

17

18 CHAPTER 3. IMPLEMENTATION

User selects

image folder

Compute features

for all images

Section 3.1

Load images

Get user feature

weightings

Sort and

display images
User

Interface

Save feature

values for re-use

Section 3.6.1

START
folder

List of ImageFeatureVector

List of images

Weights

Repeat (slider-based only)

Figure 3.1: User Interface

i1i2i3

Image queue

D
is
p
a
tc
h
er

1

2

. . .

. . .
nSubmit each

image to

thread pool

workers

(threads)

Extract

metadata

Are features

already

computed?

Compute

image feature

values

Section 3.3

Read feature

values from

metadata

Save feature

values to Exif

metadata

Section 3.6.1

Thread

join all

Compute feature values for all images

folder

image

*

image

No

Yes

Exif metadata

ImageFeatureVector

ImageFeatureVector

List of

ImageFeatureVector

Figure 3.2: Multi-threaded Feature Computer

Create a

512×512 centre

crop of image

Create a

320×240

version of image

Compute

Saliency

Segmentation

Section 3.2

Compute Contrast feature value (3.4.3)

Compute Brightness feature value (3.4.2)

Compute Blurriness feature value (3.4.1)

Compute Saturation feature value (3.4.4)

Compute Subject(s) Size feature value (3.3.2)

Compute Background feature value (3.3.3)

Compute Rule of Thirds feature value (3.3.1)

Compute Shape Convexity feature value (3.3.4)

Build

ImageFeatureVector

Compute Image Feature Values

image

Figure 3.3: Computing Image Feature Values

Graph-based

image segmen-

tation k = 125

Gaussian blur

image σ = 0.6

Compute

saliency map

Compute average

saliencies for

each segment

Renormalise to

exclude segments

< 1% image area

Compute Saliency Segementation

image

segmentation

blurred

image
saliency

map

saliency

segmentation

Figure 3.4: Saliency Segmentation

3.1. MULTI-THREADED FEATURE COMPUTER 19

3.1 Multi-threaded Feature Computer

i1i2i3

Image queue

D
is
p
a
tc
h
er

1

2

. . .

. . .
nSubmit each

image to

thread pool

workers

(threads)

Extract

metadata

Are features

already

computed?

Compute

image feature

values

Section 3.3

Read feature

values from

metadata

Save feature

values to Exif

metadata

Section 3.6.1

Thread

join all

Compute feature values for all images

folder

image

*

image

No

Yes

Exif metadata

ImageFeatureVector

ImageFeatureVector

List of

ImageFeatureVector

Figure 3.5: Multi-threaded Feature Computer

The project’s principal focus is investigating segmentation-derived features, so the com-

putation of such feature values from images forms the main part of the program. It is

important to have an efficient feature computer because people will not have the patience

to wait a long time when using it. My program achieves a 2.75× speed-up by allowing

multiple images to be processed in parallel.

C# Tasks are, according to Microsoft, “the preferred way to write multithreaded and

parallel code”1. Computation of an image’s features constitutes a Task. These are queued

by the program, and scheduled and assigned to available logical threads by the thread pool

(Figure 3.5). Since there are never multiple threads working on the same image, there is no

risk of race conditions or deadlock. Each image Task returns a new ImageFeatureVector

and, after all Tasks have joined/finished, a list of these vectors is constructed and returned.

Within the Agile framework, I prioritised the implementation of an early working single-

threaded version to allow progress on dependent tasks. In later sprints, I refined and

re-implemented this with the multi-threaded architecture described above. Figure 3.6

shows the speed-up achieved by the parallelised version.

1https://msdn.microsoft.com/en-us/library/dd460717(v=vs.110).aspx

https://msdn.microsoft.com/en-us/library/dd460717(v=vs.110).aspx

20 CHAPTER 3. IMPLEMENTATION

Graph showing feature computation time for a
single- and multi-threaded computer

0 10 20 30
0

10

20

30

40

50

60

70

80

Number of input images

A
ll

-f
ea

tu
re

s
C

om
pu

ta
ti

on
 T

im
e

(s
ec

on
ds

)

Single-
threa

ded

Multi-th
readed (2.75× faster)

Linear in number
 of images

 ≈ number of cores

Figure 3.6: The exact timing results here are not particularly important, since they are

dependent on my computer. What is of interest are the relative differences. The gradients

of the trend-lines are about 2.474 for single-threaded and 0.900 for multi-threaded.

3.2. SEGMENTATION AND SALIENCY SEGMENTATION 21

3.2 Segmentation and Saliency Segmentation

Graph-based

image segmen-

tation k = 125

Gaussian blur

image σ = 0.6

Compute

saliency map

Compute average

saliencies for

each segment

Renormalise to

exclude segments

< 1% image area

Compute Saliency Segementation

image

segmentation

blurred

image
saliency

map

saliency

segmentation

Figure 3.7: Saliency Segmentation

Before high-level features are extracted, the image needs to be simplified into symbols by

segmentation. This module runs the image segmentation algorithm, and then combines

saliency information with the segmentation into a saliency segmentation.

3.2.1 Graph-based Image Segmentation

The image is segmented in order to obtain high-level symbols analogous to those ob-

tained by cortical V1 neurons in the human brain, to approximate the object detec-

tion/recognition process that humans likely use when evaluating image quality. The

chosen segmentation algorithm was proposed in Felzenszwalb & Huttenlocher’s paper

“Efficient Graph-Based Image Segmentation” [9].

Implementing the algorithm myself allowed me to: adjust the output format for easy

augmentation with saliency information; investigate the way the algorithm measures pixel

difference (Section 3.2.2); and use different parameter values from those in the original

paper.

The output of the algorithm is a mapping from pixel position (x, y) to a segment index.

Pixels mapping to the same segment index are in the same segment. My implementation

also calculates segment sizes and average colour (in CIELAB space), which it associates

with the segmentation.

The first and most computationally expensive step is to construct the undirected graph

G = (E, V) over which the algorithm operates. Figure 3.8 shows a section of the con-

structed graph, as well as the order in which edges are created such that each edge is

added exactly once.

A disjoint-set forest data structure is maintained throughout the running of the algorithm.

At any step, there is a forest of disjoint, but mutually spanning MSTs of vertices, each

corresponding to a segment of the image. The core disjoint-set data structure algorithm,

with the union by rank and path compression optimisations is in CLRS [7] (p571).

22 CHAPTER 3. IMPLEMENTATION

d(p0, p1) d(p0, p2) d(p0, p3)

d(p0, p4) d(p0, p5)

d(p0, p6) d(p0, p7) d(p0, p8)

p0

p1 p2 p3

p4 p5

p6 p7 p8

(a) A section of the constructed graph (b) A snapshot of the graph creation process

Figure 3.8: (a) There is a vertex for each image pixel. Red edges are those connected to

vertex p0, and weights measure pixel-difference. All other edges are shown in green. (b)

Vertices are considered in English reading order. The vertex considered at this step is

blue, the edges to be added at this step are red, previously added edges are green, and

edges still to be added are dotted.

3.2. SEGMENTATION AND SALIENCY SEGMENTATION 23

Make-Set(x)

1: x.p = x

2: x.rank= 0

3:

4:

5:

6:

7:

8:

9:

Make-Set(x, X, Y)

1: x.p = x

2: x.rank= 0

3: x.size= 1

4: x.X = X

5: x.Y = Y

6: x.iDiff = 0

7: x.totalL= I(X, Y).L

8: x.totalA= I(X, Y).a

9: x.totalB= I(X, Y).b

Find-Set(x)

1: if x 6= x.p then

2: x.p = Find-Set(x.p)

3: end if

4: return x.p

Find-Set(x)

1: if x 6= x.p then

2: x.p = Find-Set(x.p)

3: end if

4: return x.p

Union(x, y)

1: Link(Find-Set(x),Find-Set(y))

Union(x, y, joiningEdgeWeight)

1: Link(Find-Set(x),Find-Set(y),

joiningEdgeWeight)

Link(x, y)

1: if x.rank > y.rank then

2: y.p = x

3:

4:

5:

6:

7:

8: else

9: x.p = y

10: if x.rank == y.rank then

11: y.rank = y.rank + 1

12: end if

13:

14:

15:

16:

17:

18: end if

Link(x, y, joiningEdgeWeight)

1: if x.rank > y.rank then

2: y.p = x

3: x.size += y.size

4: x.iDiff = joiningEdgeWeight

5: x.totalL += y.totalL

6: x.totalA += y.totalA

7: x.totalB += y.totalB

8: else

9: x.p = y

10: if x.rank == y.rank then

11: y.rank = y.rank + 1

12: end if

13: y.size += x.size

14: y.iDiff = joiningEdgeWeight

15: y.totalL += x.totalL

16: y.totalA += x.totalA

17: y.totalB += x.totalB

18: end if

from “Introduction to Algorithms” (CLRS) Augmented for segmentation

Figure 3.9: Disjoint-set augmented code

24 CHAPTER 3. IMPLEMENTATION

u v
w

C1 C2

u1

u2i1
v1

v2i2

Max. edge
weight in C2

Max. edge
weight in C1

u v
i3

C3

Max. edge
weight in C3

Before merge After merge

Figure 3.10: The merge happens if w ≤ min
(
i1 + k

|C1| , i2 + k
|C2|

)
.

Since the structure needed to be augmented for use in the segmentation algorithm, I could

not use an existing disjoint-set library. The augmentations are shown in Figure 3.9. Extra

properties were added to each element, which are mostly only valid when the element is

a set representative:

• size: the number of vertices in the element’s set/segment.

• X and Y : x- and y-coordinates of the pixel that the element corresponds to.

• iDiff : The maximum edge weight between any two vertices within the set/segment

(internal difference).

• totalL, totalA, and totalB : Totals of the element’s set’s CIELAB colour components,

to be divided by size at the end to find the segment’s average colour.

As in Kruskal’s, graph edges are considered in a non-decreasing order. For each edge,

e = (u, v), if it does not introduce a cycle in the current forest (i.e. Find-Set(u) 6= Find-

Set(v)) and its weight is below an adaptive threshold |e| ≤ T (u, v), it is added to the

forest, merging the segments that contain u and v (Union(u, v, |e|)). The threshold is

defined as an adaptive amount above the minimum internal difference of the two segments

to be merged:

T (u, v) = min

(
Find-Set(u).iDiff +

k

Find-Set(u).size
,

Find-Set(v).iDiff +
k

Find-Set(v).size

)
where k is a parameter. In essence, two segments are merged if their internal variations,

based on my pixel-difference metric, are similar to the joining edge’s weight. The merge

step is illustrated in Figure 3.10, Figure 3.11 shows how the segments evolve throughout

the running of the algorithm, and Figure 3.12 gives an example of the graph after algorithm

termination.

3.2. SEGMENTATION AND SALIENCY SEGMENTATION 25

Original 0 steps 12,000 steps 24,000 steps 36,000 steps

48,000 steps 60,000 steps 74,000 steps 110,000 steps 122,000 steps

134,000 steps 158,000 steps 170,000 steps 194,000 steps 206,000 steps

218,000 steps 232,000 steps 244,000 steps 246,000 steps 248,000 steps

250,000 steps 270,000 steps 272,000 steps 286,000 steps 304,000 steps

Figure 3.11: Visualisation of the runtime of the segmentation algorithm. Segments are

randomly coloured. This took approximately 1.8 s for an input resolution of 320×240. A

GIF version can be found at http://imgur.com/a/WLG0h.

http://imgur.com/a/WLG0h

26 CHAPTER 3. IMPLEMENTATION

C1 C2

C3

Figure 3.12: Segmentation final graph state

3.2.2 Pixel Difference Metric

The segmentation algorithm requires a function representing the difference between pixels

pi and pj, which is used for the edge weights. I created a colour-difference metric for this

purpose.

I explored and tested a selection of options from across the literature. The best was

the CIEDE2000 [6] because it is a perceptually uniform colour-difference metric for the

CIELAB colour space (Euclidean distances in the space are proportional to the colour

difference perceived by an average human eye). I implemented CIEDE2000 with the help

of Sharma et al.’s paper [17].

The reason for creating my own hybrid metric was that I sometimes noticed extra incorrect

segments using CIEDE2000. I believe this to be in part due to image compression, which

can create regions of constant colour, exemplified in Figure 3.13. Since the segmentation

algorithm is more reluctant to merge large regions, they can become distinct segments in

the result. I found this error most apparent in under- and over-exposed image regions.

Therefore, I augmented the colour difference metric to act as CIEDE2000 by default and

as absolute intensity difference for dark or bright pixels (< 20 or > 210).

The other options that I surveyed, from worst to best, were:

• Absolute intensity difference

This operates on a greyscale version of the image. It works in the general case,

but fails in many, such as in Figure 3.14, where all of the colours have the same

3.2. SEGMENTATION AND SALIENCY SEGMENTATION 27

Original image Regions of constant colour Segmentation using CIEDE2000

Figure 3.13: Negative effect of image compression on segmentation

perceptual intensity. It was implemented first to get a working version early, so that

I could test the segmentation algorithm, before being refined.

• RGB Euclidean distance

This näıve measure of colour difference is defined as

d =
√

(R1 −R2)2 + (G1 −G2)2 + (B1 −B2)2. (3.1)

Felzenszwalb & Huttenlocher, when they proposed the segmentation algorithm, re-

stricted their pixel difference to be based on RGB information. However, the RGB

colour space is known to be not perceptually uniform.

• CIELAB Euclidean distance

The CIELAB colour space [6] is partially perceptually uniform. In 1976, the preferred

colour-difference measure was L*a*b* Euclidean distance:

d =
√

(L∗1 − L∗2)2 + (a∗1 − a∗2)2 + (b∗1 − b∗2)2. (3.2)

For the RGB → L*a*b* conversion in my program, I used the .NET Image Library

developed by Fredrik Schultz and Contributors2.

Figures 3.15 and 3.16 compare the different options and highlight where my measure

helps.

2https://github.com/fschultz/NetImageLibrary

https://github.com/fschultz/NetImageLibrary

28 CHAPTER 3. IMPLEMENTATION

Original Segmentation using Segmentation using

intensity as pixel difference colour as difference (Me)

Figure 3.14: By using intensity difference as the pixel difference metric in the segmentation

algorithm, important information that humans use to detect objects is lost.

3.2.3 Adding Saliency Information

I combine the segmentation with saliency information as in the approach of Yeh et al.[22],

making a saliency segmentation.

For extracting saliency information, I used Achanta et al.’s saliency map [1], using

CIEDE2000 instead of Euclidean CIELAB distance. I tried my hybrid colour difference

metric here but, because it would require multiple transformations from RGB ↔ LAB,

floating point errors ruined the result.

The saliency map is computed as follows:

Saliency-Map(I)

1: B = Gaussian-Blur(I, σ : 0.6) . Blur the image

2: C = Mean-CIELAB-Colour(I) . Find the average image colour

3: smax = 0

4: for each pxy do

5: sxy = CIEDE2000(RGB-to-CIELAB(pxy), C) . Colour difference

6: smax = max(smax, sxy)

7: end for

8: for each pxy do . Normalise saliency map

9: sxy = sxy/smax

10: end for

11: return S

A segment’s saliency is the average of the saliencies of its constituent pixels. The segment

saliencies are normalised, ignoring all segments smaller than 1% of the image. Figures

3.17 and 3.18 exemplify the process.

The “ignoring segments < 1%” step was added because I discovered that feature imple-

mentations later in the pipeline could not correctly detect image subjects. I noticed a

trend of small, high-salience regions not corresponding to actual image objects. After

3.2. SEGMENTATION AND SALIENCY SEGMENTATION 29

Original Intensity Diff. RGB Euclidean L*a*b* Euclidean CIEDE2000 My Hybrid

Original Intensity Diff. RGB Euclidean L*a*b* Euclidean CIEDE2000 My Hybrid

Figure 3.15: Comparison of pixel difference metrics (Average segment colouring). Segment

spilling is less extreme in my hybrid, so important information is not “smudged”.

30 CHAPTER 3. IMPLEMENTATION

Original Intensity Diff. RGB Euclidean L*a*b* Euclidean CIEDE2000 My Hybrid

Original Intensity Diff. RGB Euclidean L*a*b* Euclidean CIEDE2000 My Hybrid

Figure 3.16: Same data as in Figure 3.15, but segments are coloured randomly, which

gives a better picture of what the computer has to work with. Images 4 and 5 show how

my hybrid metric successfully deals with the compression artefacts. However, image 6

shows that it does not always work; in this example, the compressed region is neither

over- or under-exposed, so the hybrid inherits the error of CIEDE2000. To further assist

with these artefacts, my implementation uses saliency information.

3.2. SEGMENTATION AND SALIENCY SEGMENTATION 31

Original Segmentation Saliency Map Saliency Segmentation

Figure 3.17: Segmentation can only partition the image. The saliency segmentation is

used to try to find the subject(s). This is important for extracting features about their

positions/sizes/shapes.

Original Segmentation Saliency Segmentation

Figure 3.18: The compression artefacts of image 6’s segmentation in Figure 3.16 are

mitigated by the saliency segmentation.

32 CHAPTER 3. IMPLEMENTATION

Original Before ignoring small segments After ignoring small segments

(Ignored segments in red)

Figure 3.19: The original saliency segmentation gave maximum saliency scores to small,

spurious segments.

Original k = 25, σ = 0 k = 125, σ = 0 k = 125, σ = 4

Figure 3.20: Decreasing k causes more and smaller segments. Increasing σ blurs the image

more before.

ignoring these, noise in the high-level features was significantly reduced (see Figure 3.19).

Although I acknowledge that 1% is a somewhat arbitrary cut-off point for “too small”

segments, the intuitive justification is that a person probably would not try to take a

picture of something so small in the frame.

3.2.4 Choosing the Segmentation Parameters

The algorithm has two parameters

k Related to the scale of observation. A larger value encourages larger segments;

σ Also related to scale. A pre-processing Gaussian blur is performed. A larger value

encourages segments to form for more general objects, rather than finer details

within objects.

Figure 3.20 gives an example of changing the parameters.

In Felzenszwalb & Huttenlocher’s paper, they state parameter values without much justi-

fication, so I performed a systematic parameter sweep for k and σ to determine reasonable

values. The sweep tested segmentation-derived features on a set of 80 images for different

3.3. COMPUTING HIGH-LEVEL IMAGE FEATURES 33

k, σ Score k, σ Score k, σ Score k, σ Score

25, 1 51 75, 0 56 100, 0 61 150, 0 54

25, 1.4 46 74, 0.4 58 100, 0.4 56 150, 0.8 58

25, 2.5 52 75, 0.6 59 100, 0.6 61 175, 1.4 51

50, 0.4 48 75, 0.8 60 100, 1.8 58 200, 0 55

50, 0.6 58 75, 1 64 125, 0 61 250, 0.6 53

50, 0.8 57 75, 1.4 59 125, 0.4 53

50, 1.4 62 75, 1.8 57 126, 0.6 61

50, 1.8 60 125, 0.8 59

Table 3.1: Segmentation parameter sweep initial results. Highlighted pairs advanced to

further testing.

(k, σ) pairs. Table 3.1 gives the initial results. I then tested on more images for pairs

scoring above 60/80 to finally decide on k = 125, σ = 0.6.

While doing the sweeps, I spotted a potential trend: it seemed that, as k increased,

a suitable σ resulting in similar segmentations decreased. This seemed to be a linear

relationship for 25 < k < 150. Some interesting further work could be a more rigorous

investigation of this hypothesis.

3.3 Computing High-level Image Features

Create a

512×512 centre

crop of image

Create a

320×240

version of image

Compute

Saliency

Segmentation

Section 3.2

Compute Contrast feature value (3.4.3)

Compute Brightness feature value (3.4.2)

Compute Blurriness feature value (3.4.1)

Compute Saturation feature value (3.4.4)

Compute Subject(s) Size feature value (3.3.2)

Compute Background feature value (3.3.3)

Compute Rule of Thirds feature value (3.3.1)

Compute Shape Convexity feature value (3.3.4)

Build

ImageFeatureVector

Compute Image Feature Values

image

Figure 3.21: Computing Image Feature Values

34 CHAPTER 3. IMPLEMENTATION

1 16

6

Figure 3.22: I minimise the amount of data cropped by taking a centre-crop. It is most

likely that focal objects are near the centre.

The purpose of this module is to compute the 8 individual floating-point feature values,

and package them up into an ImageFeatureVector.

The program takes input images of the 4:3 aspect ratio. There is a trade-off in image

size between feature computation speed and retention of useful information. I chose

320×240 in line with Felzenszwalb & Huttenlocher [9]. However, the blurriness feature,

with O(nlogn) time complexity, needed a square, power of 2 input, so I chose 512×512

to avoid aliasing artefacts, shown in Figure 3.22.

In order to implement the features within the Agile framework, I needed a modular archi-

tecture that would facilitate the implementation and unit-testing of features in sprints.

Therefore, each feature was considered as a separate work item.

3.3.1 Rule of Thirds

This feature is based on a photography rule-of-thumb: the image is better if the subject(s)

are close to any of the 4 intersections of the third lines of the image, power points. I

compute a weighted sum of the segment distances from power points, weighted by salience

and size.

To get an early working version, I implemented Yeh et al.’s [22] definition of the feature,

before refining it later:

fROT0 =
1∑
iAiSi

∑
i

AiSie
−D2

i /2σ (3.3)

where Si is salience, Ai is size, Di is distance from segment centre to the closest power

point, and σ is a parameter. As given, it favoured large segments too much (see Figure

3.23). Therefore, I tested some variations on the definition, each of which puts less

emphasis on large segments in a different way. For each, I ignore segments smaller than

1% of the image:

3.3. COMPUTING HIGH-LEVEL IMAGE FEATURES 35

Original Power point distance Map RoT heat-map using fROT0

Figure 3.23: The heat-map, which illustrates segment contributions to the feature value,

shows that the background was incorrectly considered important.

1.

fROT1 =
1∑

i Si lnAi

∑
i

Si lnAie
−D2

i /2σ. (3.4)

Large segments are still favoured, but much less because of the logarithm.

2.

fROT2 =
1∑
i Si

∑
i

Sie
−D2

i /2σ. (3.5)

Segment size is ignored entirely.

3.

fROT3 =
1∑

i Si/Vi

∑
i

Si
Vi
e−D

2
i /(2σ) (3.6)

where

Vi = max

(
max

x1,x2∈Ci

(
x2 − x1
Width

)
, max
y1,y2∈Ci

(
y2 − y1
Height

))
(3.7)

is the segment “spread”, illustrated in Figure 3.24.

Figure 3.25 compares the implemented options. I chose fROT3; using spread instead of

number of pixels accommodates for segments that cover a large area of the image, but are

fairly thin (for example, a tree with holes between branches). These are still large objects

to humans.

Figure 3.26 shows the steps in computing the chosen feature value.

I performed a parameter sweep, similar to that in Section 3.2.4, to choose σ = 0.17.

The different iterations made up different sprints, each with code reviews at the end for

monitoring progress. I employed this strategy for the other features and the rest of the

implementation.

36 CHAPTER 3. IMPLEMENTATION

Height

Width

Figure 3.24: Segment spread is the longest of the width or height of the segment’s bound-

ing box.

3.3.2 Subject(s) Size

Inspired by Yeh et al.’s paper [22], in which it is called “ROI Size”, this feature approxi-

mates the proportion of the image taken up by subjects.

First, the saliency segmentation is thresholded:

B(i) =

{
1, if Si > α

0, otherwise
(3.8)

where Si are the normalised segment saliencies. The bounding box for each ‘1’ segment

in B is computed, and the feature value is the proportion of the image taken up by these

bounding boxes. In other words, it is the rough proportion of the image taken up by

subjects. Figure 3.27 illustrates the steps.

I performed a parameter sweep, similar to that in Section 3.2.4, to determine α = 0.73.

This is different from the value of αYeh = 0.67 used by Yeh et al.

3.3.3 Background Distraction

This feature is from Luo et al.’s paper [15], in which it is called “Simplicity”. It quantifies

how “distracting” the background is. Luo et al. said that a distracting background

contains many different colours.

First, the bounding box map from Subject(s) Size is inverted, leaving the “background”.

The remaining pixels are quantised to a bit-depth of 12 (rather than 24). Figure 3.28

shows all 4096 possible colours after quantisation.

The quantised background is used to populate a height-normalised histogram which has

a bin for each colour. The feature value is obtained by computing the proportion of bins

with heights above 0.01. This is an approximation of the background’s colour variation.

Bins lower than 0.01 are ignored to reduce the effects of noise.

From testing, I found the feature value only gets up to around 0.1. Therefore, I added an

approximate normalisation factor of 1
0.11

.

3.3. COMPUTING HIGH-LEVEL IMAGE FEATURES 37

Original fROT0 = 0.65 fROT1 = 0.87 fROT2 = 0.88 fROT3 = 0.93

Original fROT0 = 0.61 fROT1 = 0.70 fROT2 = 0.72 fROT3 = 0.71

Original fROT0 = 0.83 fROT1 = 0.77 fROT2 = 0.77 fROT3 = 0.75

Original fROT0 = 0.55 fROT1 = 0.55 fROT2 = 0.54 fROT3 = 0.52

Original fROT0 = 0.64 fROT1 = 0.77 fROT2 = 0.77 fROT3 = 0.78

Original fROT0 = 0.66 fROT1 = 0.61 fROT2 = 0.60 fROT3 = 0.54

Figure 3.25: Heat-maps and feature values for the implemented options. In general,

the chosen version (fROT3) is the best, because it correctly identifies where the subject is.

However, it does not work so well on the last picture, whose ‘subject’ is thin and diagonal,

giving it a large spread.

38 CHAPTER 3. IMPLEMENTATION

Original

Segmentation Saliency Map Saliency Segmentation

Spread map Distance map RoT Heat-map

Figure 3.26: fROT = 0.73. The segments which contribute most to the feature value are

those which are bright in the saliency segmentation, bright in the distance map, but dark

in the spread map.

Original Saliency Segmentation “Subject” Segments Bounding Boxes Overlay

Figure 3.27: fSubjectSize = 0.24.

3.3. COMPUTING HIGH-LEVEL IMAGE FEATURES 39

Figure 3.28: 4096 possible colors after the quantisation step

40 CHAPTER 3. IMPLEMENTATION

Original

Subject(s) located

Quantised Background Colour histogram (9 noticeable colours present), fBackDistract = 0.02

Figure 3.29: Only 9 colours are present in the quantised background. Note that this

diagram shows a subset of the full 4096-colour histogram in Figure 3.28.

Figures 3.29 and 3.30 give two examples of this feature’s extraction.

3.3.4 Shape Convexity

This feature proposes modifications to address several flaws in Datta et al.’s Shape Con-

vexity [8]. Their feature identifies the segments that fill at least 80% of their convex hulls

(sufficiently convex segments) and counts their areas:

fDattaConvex =

∑
sufficiently convex segment size∑

segment size
. (3.9)

A problem with this is that it considers all segments equally. There is no point in having

convex regions that peoples’ eyes are not attracted to. Given my saliency segmentation,

I refined it to only consider “subjects” (segments above 70% saliency). So, the feature

3.3. COMPUTING HIGH-LEVEL IMAGE FEATURES 41

Original

Subject(s) located

Quantised Background Colour histogram (461 noticeable colours present), fBackDistract = 1.02

Figure 3.30: An image with a distracting background

42 CHAPTER 3. IMPLEMENTATION

value should be of the form∑
subjects sufficiently convex segment size∑

subjects segment size
. (3.10)

In Section 2.2.4, I say that people tend to prefer circular, curvilinear objects to those

with jagged corners. Therefore, the second modification rewards circular convex shapes.

It does this using the fact that the convex polygons of more circular shapes generally

consist of more points. So, if n is the average number of hull points in sufficiently convex

subjects, I propose the feature value to be

fConvex =

∑
subjects sufficiently convex segment size∑

subjects segment size︸ ︷︷ ︸
How much convexity there is in

the salient parts of the image

× (1− e−β(n−3))︸ ︷︷ ︸
The average

degree of

convexity

(circularity)

(3.11)

where β > 0 is a parameter. (1 − e−β(n−3)) is a function that ranges from 0 and tends

towards 1 as n→∞. The term (n− 3) is used, because 3 is the smallest possible number

of points in a convex polygon, a triangle. I chose β = 0.11 using empirical results on some

example images.

I used the MIConvexHull library3 for computing convex hulls.

The computation of this feature is illustrated in Figure 3.31.

3.4 Computing Low-level Features

3.4.1 Blurriness

The 2D Discrete Fourier Transform (2DFT) is used to quantify how blurry the image is

as a whole.

A magnitude plot illustrates the Fourier coefficients. Each pixel’s intensity represents

the modulus of a coefficient for a different two-dimensional complex exponential: a plane

wave (see Figure 3.32). The original image can be represented as a superposition of these

plane waves, weighted by the coefficients. In non-blurry images, higher frequencies are

required to create sharp changes in pixel intensity. In blurry images, the lower frequency

waves are sufficient to represent the image, so there is little activity in the outer regions

of the plot. Since images are real-valued input arrays, symmetry can be exploited to only

require analysis of one half of the plot.

The feature value is defined as the average of the coefficients in the highest 90% of fre-

quencies in the right half of the plot (see Figure 3.33). In sharp images, there are more

3https://github.com/DesignEngrLab/MIConvexHull

https://github.com/DesignEngrLab/MIConvexHull

3.4. COMPUTING LOW-LEVEL FEATURES 43

Saliency Sufficiently

Original segmentation salient segments Convex hulls Overlay

Subject convexity = 0, fConvex = 0

Subject convexity = 1, Circularity = 0.85, fConvex = 0.85

Subject convexity = 0, fConvex = 0

Subject convexity = 0.79, Circularity = 0.85, fConvex = 0.67

Subject convexity = 1, Circularity = 0.95, fConvex = 0.95

Figure 3.31: Sufficiently convex subjects have green convex hulls. Other subjects have

red hulls.

44 CHAPTER 3. IMPLEMENTATION

Real Image 2DFT Magnitude Plot

Wave direction is the direction of the cell from the centre of the plot

Drawn lines are perpendicular to the direction of wave propagation

Wave frequency is the distance of the cell from the centre of the plot

Figure 3.32: 2DFT plane waves

3.4. COMPUTING LOW-LEVEL FEATURES 45

Coefficients of
high frequency

Coefficients of
low frequency

Periodicity
artefacts

Figure 3.33: The feature value is the average of the cells in the blue-hashed region of the

magnitude plot.

bright cells, resulting in a higher feature value (and vice versa for blurry images). I finally

added a normalising factor of 5.5.

The reason for discarding the lowest 10% of frequencies is due to periodicity artefacts in

the plot. The 2DFT assumes that the finite image is infinitely repeated in space, as shown

in Figure 3.34. As a result, many images’ plots have strong vertical and/or horizontal

lines corresponding to lines between the image and its repetitions, not in the image itself.

In general, a straight line on the plot means contribution from many plane waves with

the same direction, but differing frequencies. In the image, this corresponds to sharp,

straight, perpendicular lines. It is important to note that the image positions of these

lines are lost in the magnitude plot: they are captured by coefficient phase.

Figures 3.35–3.37 give examples of the 2DFT for a few images. Figure 3.35 shows a sharp

image, where there are bright cells far away from the centre. To contrast, Figure 3.37

shows a blurry image, whose 2DFT is constrained more closely to the centre.

For the 2FFT I used an existing Cooley-Tukey implementation4.

3.4.2 Brightness

This ostensibly simple feature converts the image to greyscale, and computes the average

pixel intensity:

fBright =

∑
x

∑
y I(x, y)

Width× Height
(3.12)

4https://www.codeproject.com/kb/gdi/fft.aspx

https://www.codeproject.com/kb/gdi/fft.aspx

46 CHAPTER 3. IMPLEMENTATION

From Figure 3.35 From Figure 3.36 – Horizontal discontinuities

lead to vertical artefacts in the 2DFT

Figure 3.34: Assumed 2DFT periodicity

Original

Centre crop 2D Discrete Fourier Transform (Magnitude plot)

Figure 3.35: fblur = 0.92

3.4. COMPUTING LOW-LEVEL FEATURES 47

Original

Centre crop 2D Discrete Fourier Transform (Magnitude plot)

Figure 3.36: fblur = 0.40

Original

Centre crop 2D Discrete Fourier Transform (Magnitude plot)

Figure 3.37: fblur = 0.29

48 CHAPTER 3. IMPLEMENTATION

Original Greyscale: fBright = 0.15

Original Greyscale: fBright = 0.90

Figure 3.38: Converting to greyscale

Care must be taken with greyscale conversion. Näıvely computing the average of the

RGB components would produce a convincing black-and-white image but it would not

be perceptually accurate, since the human retina has different sensitivities to different

colours. It seems unclear which conversion method is “best”, but generally people perceive

green as brightest, then red, and blue as dimmest. My program uses relative luminance5,

since it is concerned with comparing intensities rather than seeking a physical energy

value:

I(x, y) = 0.2126× r + 0.7152× g + 0.0722× b (3.13)

Figure 3.38 shows two examples of the greyscale image produced.

3.4.3 Intensity Contrast

High-contrast images are often thought to be better because they make use all possible

intensity values, and draw attention to subjects. Known as Weber Contrast, this feature

computes the average absolute difference from the mean intensity of the image:

fContrast =
1

Width× Height

∑
x

∑
y

|I(x, y)− Iav|
Iav

(3.14)

where Iav is the average intensity of the image, and I(x, y) is the relative luminance,

defined in Equation (3.13).

5https://www.w3.org/Graphics/Color/sRGB (Figure 1.8)

https://www.w3.org/Graphics/Color/sRGB

3.4. COMPUTING LOW-LEVEL FEATURES 49

Original Greyscale Contrast Heatmap: fContrast = 0.83

Original Greyscale Contrast Heatmap: fContrast = 0.32

Original Greyscale Contrast Heatmap: fContrast = 0.04

Figure 3.39: In the heatmaps, red pixels are much brighter than the average, blue are

much darker, and green are close to average.

This is mostly the same as Yeh et al.’s definition [22]. However, they do not use the

absolute difference, so just have

fYehContrast =
1

Width× Height

∑
x

∑
y

I(x, y)− Iav
Iav

. (3.15)

This would not work, because it is always equal to 0.

There is a final normalisation factor of 1
1.3

. Figure 3.39 compares intensity heatmaps.

50 CHAPTER 3. IMPLEMENTATION

Original Saturation Heatmap: fSat = 0.31

Figure 3.40: Computing Saturation

3.4.4 Saturation

The final low-level feature computes the average pixel saturation, which is a measure of

colourfulness. Colour is important for aesthetic image quality (it is used as the basis for

the segmentation algorithm), so it makes sense to have a feature extracting it. There are

many definitions of saturation, but my program uses the original 1978 definition from

when Joblove & Greenberg [11] introduced the HSV colour space:

Sat(x, y) =
max(rx,y, gx,y, bx,y)−min(rx,y, gx,y, bx,y)

max(rx,y, gx,y, bx,y)
(3.16)

I used HSV because it performs well despite its simplicity. Figure 3.40 gives an example.

3.5 User Interface

User selects

image folder

Compute features

for all images

Section 3.1

Load images

Get user feature

weightings

Sort and

display images
User

Interface

Save feature

values for re-use

Section 3.6.1

START
folder

List of ImageFeatureVector

List of images

Weights

Repeat (slider-based only)

Figure 3.41: User Interface

The purpose of the GUI is to obtain a weight for each feature from the user, score and rank

the image set using the weighted combination of computed feature values, and display the

sorted images. It was necessary for the project’s human evaluation. In Human Computer

Interaction (HCI) theory, there is a trade-off between Intuitive (easy to use, learn and

remember) interfaces, and Efficient (powerful and flexible) interfaces6. Therefore, I made

two interfaces, with the aim of comparing them in the evaluation.

6Part II HCI course:

http://www.cl.cam.ac.uk/teaching/1617/HCI/HCI-notes-michaelmas2016.pdf

http://www.cl.cam.ac.uk/teaching/1617/HCI/HCI-notes-michaelmas2016.pdf

3.5. USER INTERFACE 51

Figure 3.42: Efficient Interface

3.5.1 Efficient Interface

Although it is harder to use, and takes time to learn, the efficient interface allows the

user greater flexibility by manually choosing the feature weights using sliders. The images

are re-sorted in real-time as the sliders are moved. This instant user feedback helps them

to learn exactly how their actions affect the result. The sliders themselves have helper

prompts at either end, and mouse-hover tooltips for extra information. Figure 3.42 shows

a screenshot of this UI.

3.5.2 Intuitive Interface

For the intuitive interface, the features and weights are not exposed to the user. Instead,

they are inferred from a sequence of picture-based questions. Each question asks the user

to compare 4 images (see Figure 3.43). The weights for each feature are calculated using

the average of the feature values of the chosen images. Initially, I used only these averages

for the weights. However, since different features’ values are distributed differently, I

modified to use the following equation to compensate:

w =

{
x−µ
µ−a if x < µ
x−µ
b−µ if x > µ

(3.17)

52 CHAPTER 3. IMPLEMENTATION

Figure 3.43: Intuitive Interface

where x is the average feature value of selected images, µ is the average feature value for

all images, and a and b are the min. and max. feature values in the set. This codes the

weights to properly range from -1 to 1, and be roughly normalised across the features.

The number of questions asked is adaptive based on how quickly the inferred weights

converge to within a Normal 95% confidence interval.

3.5.3 Model-View-ViewModel

MVVM is an interface design pattern that efficiently splits the main program logic, Model,

from the GUI, View (See Figure 3.44). The ViewModel is the interface between the two,

which contains logic for a suitable View. Crucially, the View and Model have no knowledge

of each other.

I used Windows Presentation Foundation (WPF) for the GUIs, since it is designed to make

the MVVM pattern easy to implement and maintain. Views are in an XAML format,

and they use data binding to subscribe to properties and commands in the ViewModel

code. Since WPF is for C#.NET, it interacted seamlessly with my Model (the feature

computer).

3.6. OPTIMISATIONS 53

Model

Cannot see VM

ViewModel View

Subscribes to VM

Data Binding

Figure 3.44: The arrow means “sees”. The Model can be developed separately. A View-

Model is made for each screen in the program such that hot-swappable Views can be

bound to it.

The Efficient interface has a single View-ViewModel, but the Intuitive interface uses a

stack-based View-ViewModel screen approach.

3.6 Optimisations

3.6.1 Storing feature values for re-use

This optimisation stores computed feature values inside image metadata so that they may

be quickly read if used by the program again. It was necessary for the human evaluation,

to not require a minute of computation time for each participant. It is an example of the

Agile strategy’s ability to adapt to changing requirements, since I had not considered it

at the point of writing the Project Proposal.

My program uses the MakerNote field in JPEG Exif metadata. For research and testing, I

created an Exif viewing tool (Figure 3.45). I tested editing/reading/adding the metadata,

which did not cause any Windows or Android viewing problems.

Data stored using Exif is invisible to the user, making the solution clean and seamless.

Furthermore, metadata information is bound to the image, so it travels with it across

networks and file-systems. The only drawback of the Exif method is that it only works

on JPEG images (other image formats require re-computation each time). However,

this project is intended for photographs, for which JPEG is the dominant compression

standard.

Before discovering Exif, I planned on using a text/XML file in the chosen folder to store all

image features. However, this solution is clunky and fails if images are renamed, removed

or added. Even saving the file in a global user folder does not get around the problem.

Integrating this into the multi-threaded infrastructure gave a speed-up of about 95%, as

graphed in Figure 3.46.

Feature values are stored as a byte-array and the ImageFeatureVector class allows con-

version to and from this representation, shown in Figure 3.47. To check that saved

metadata is from my program, the Version and NumberOfFeatures fields must be as

54 CHAPTER 3. IMPLEMENTATION

Figure 3.45: Exif viewer snippet

3.6. OPTIMISATIONS 55

Graph showing feature computation time for three
different schemes

0 10 20 30
0

10

20

30

40

50

60

70

80

Number of input images

A
ll

-f
ea

tu
re

s
C

om
pu

ta
ti

on
 T

im
e

(s
ec

on
ds

)

Single-
threa

ded

Multi-th
readed (2.75× faster)

Linear in number
 of images

 ≈ number of cores

Multi-threaded Exif (44× faster)

Figure 3.46: Pre-computing features gives a further 16.1× reduction in running time

compared to multi-threaded, or a 44× speed-up compared to single-threaded.

56 CHAPTER 3. IMPLEMENTATION

Version
NumberOf

Features
Feature 1 Feature 2 Feature n

0 1 2 10 18 2 + 8n

Figure 3.47: ImageFeatureVector byte-array representation. All feature values are

double-precision floating point numbers.

Figure 3.48: Performance analysis. Calls to System.Drawing.Bitmap.GetPixel(x,y)

were hot, and the Segmentation algorithm was run again for each feature.

expected. Also, the length of the byte array must be consistent with the expected num-

ber of features (= 2 + 8 × NumFeatures). If the feature implementations are upgraded,

the current expected version is incremented. Future work could be improving this check,

perhaps using a checksum or hash of the pixel data.

3.6.2 Detecting slow code in the segmentation implementation

By using a lower-level extension of C#.NET’s Bitmap image class, I achieved approxi-

mately a 25% speed-up.

After implementing the segmentation algorithm, I used a Performance Analyser to find

out which parts of the code were hottest. Figure 3.48 shows that this was finding pixel

difference. I could not optimise the CIEDE2000 implementation, and the colour space

conversion was part of a library. However, I could improve the tens of thousands of calls

to Bitmap.GetPixel(x,y). The speed-up was achieved using a DirectBitmap extension,

which treats the image as an Int32 array. This gets around having to lock and unlock

the image each time a pixel value is read.

I achieved a further 4× speed-up by pre-computing the saliency segmentation before

extracting the high-level features. Initially, each high-level feature was self contained by

taking the image in as an input, and outputting the feature value. Although this made

for tidy, modular code, it meant that the image segmentation algorithm was run for each

of the high-level features.

3.7. TESTING AND DEBUGGING 57

3.7 Testing and Debugging

The feature extractor implementations were unit tested using constructed image examples,

with tests being sprint objectives. For the low-level features, I used an image editor to

increase/decrease the brightness/contrast/saturation/blur in a set of images, and tested to

see if the feature values changed correctly (see Figure 3.49). I also tested edge-cases using

extreme artificial examples. This helped to determine the theoretical range of the feature

values. For example, it was important that a completely white image has a brightness

value of 1.

For the high-level features, more specific test data was required (see Figure 3.50 for

examples):

• Rule of Thirds

Images with circles exactly on “power-points” should receive values of 1, and the

value should reduce as the circles move farther away.

• Subject(s) Size

The feature value should be between 0 and 1, increasing as the circle radius increases.

• Shape Convexity

Images with higher proportions of convex shapes should receiver higher feature

values.

• Background Distraction

The white square is the ‘subject’, and increasing levels of Perlin noise is introduced

behind it.

When performing parameter sweeps for the segmentation algorithm, the program needed

to be running for ≈ 30 minutes at once. It was here when I first noticed the program

running out of memory after a few minutes of feature computation. I used the dotMemory7

profiler to find the source of the leaks to be with uses of the optimising DirectBitmap

image class, which bypasses the Garbage Collector. This means that instances need to

be properly Disposed of after use. The C# using(){...} block, which guarantees the

freeing of unmanaged memory even in the case of unchecked exceptions, was useful. Since

I had left slack-time in the project schedule, I could insert a sprint for investigating and

fixing the memory leaks. The modularity of my Agile sprints helped here.

Another bug in segmentation was that I accidentally bypassed the Gaussian blurring pre-

processing step. For some reason, ReSharper’s dead-code highlighting did not flag this

up. However, it did not matter because (k = 125, σ = 0) was about as good a set of

parameters as (k = 125, σ = 0.6).

7https://www.jetbrains.com/dotmemory/

https://www.jetbrains.com/dotmemory/

58 CHAPTER 3. IMPLEMENTATION

Original Higher feature value Lower feature value Extreme feature value

B
ri

gh
tn

es
s

fbright = 0.42 fbright = 0.62 fbright = 0.22 fbright = 1

S
at

u
ra

ti
on

fsat = 0.20 fsat = 0.53 fsat = 0.15 fsat = 0

In
te

n
si

ty
C

on
tr

as
t

fcontrast = 0.28 fcontrast = 0.63 fcontrast = 0.14 fcontrast = 0

B
lu

rr
in

es
s

fblur = 0.16 fblur = 0.42 fblur = 0.06 fblur = 0.03

Figure 3.49: Low-level Feature Testing

3.7. TESTING AND DEBUGGING 59
R

u
le

of
T

h
ir

d
s

fRoT = 0.999 fRoT = 0.82 fRoT = 0.16 fRoT = 0.89

S
u
b

je
ct

(s
)

S
iz

e

fSubject(s) Size = 0.03 fSubject(s) Size = 0.09 fSubject(s) Size = 0.56 fSubject(s) Size = 1

S
h
ap

e
C

on
ve

x
it

y

fConvexity = 0 fConvexity = 0.45 fConvexity = 0.996 fConvexity = 0.996

B
ac

k
gr

ou
n
d

D
is

tr
ac

ti
on

fBackDistract = 0.08 fBackDistract = 0.18 fBackDistract = 0.44 fBackDistract = 0.84

Figure 3.50: High-level Feature Testing

60 CHAPTER 3. IMPLEMENTATION

Chapter 4

Evaluation

The project successfully meets the core success criteria laid out in the Proposal.

To evaluate the project I carried out a quantitative evaluation of the saliency segmentation

algorithm, and a human evaluation of the feature-based program. I used summative,

empirical methods.

The quantitative segmentation evaluation used the Berkeley Segmentation Dataset of

manually-segmented images [2]. This allowed me to compare my computer-generated

segmentations against the “ground-truth” of humans.

For the human evaluation, participants manually sorted a set of photographs and later

used my program on the same images. I compared the performance of the tool with

different combinations of features enabled.

Furthermore, I examined the correlation between feature values themselves, to determine

which features contained the most independent information.

This chapter ends with a discussion of the strengths and weaknesses of the approach, and

feedback from the study participants.

61

62 CHAPTER 4. EVALUATION

4.1 List of Objectives

The purpose of the evaluation was to answer the following questions:

1. Quantitatively, how much does augmenting the segmentation with

saliency information help? (CORE)

2. Does the tool extract information that can discriminate aesthetic image

quality? Is the tool result better than a random guess of the user’s preferred

ordering? (CORE)

3. Do the segmentation-derived features help? Are the tool sortings more ac-

curate when the high-level segmentation-derived features are enabled, compared to

just the low-level features? (CORE)

4. Is aesthetic image quality subjective? (IMPORTANT)

5. Does the tool speed up the task of image sorting? (EXTENSION)

6. Are humans biased by the initial order of images? (EXTENSION)

7. Do peoples’ image quality preferences change over time? (EXTENSION)

8. Also, if the preferences do change, Does using the tool bias peoples’ image

quality preferences? (EXTENSION)

9. How satisfied are people with the tool’s results? (EXTENSION)

10. How useful and popular is each feature? (EXTENSION)

4.2 Segmentation Evaluation

I used the Berkeley Segmentation Dataset (BSDS) of images manually segmented by

humans to evaluate my implementation [2]. Figure 4.1 gives an example from the dataset.

I wrote my own tool for evaluating my results against other algorithms on the dataset.

First, the saliency segmentation is converted into a format compatible with the dataset,

as shown in Figure 4.2). The generated edge-map G is defined as: ∀ i, j

If pixel (i, j) is in the same segment as its 8 neighbours, Gij = 0 (black)

Otherwise Gij is part of an edge. Its value (brightness) is the square of the maximum

segment saliency in the 3x3 neighbourhood. Segments smaller than 1% of the image

are ignored.

4.2. SEGMENTATION EVALUATION 63

Human Segmentation 1

Human Segmentation 2

Human Segmentation 3

Human Segmentation 4

Human Segmentation 5

Original

Combined Segmentation (average of the five humans)

Figure 4.1: Berkeley Segmentation Dataset Example

64 CHAPTER 4. EVALUATION

Original Segmentation Saliency Segmentation (red for < 1%)

Human Edges Generated Edges (without Saliency) Generated Edges (with Saliency)

Figure 4.2: Generated Edge Map Example

After processing to account for slight boundary offsets, I compute the accuracy as a

measure of difference between the two edge maps,

A(G, T) = 1−

Squared differences

of edge maps︷ ︸︸ ︷∑
i

∑
j(Gij − Tij)2∑

i

∑
j G

2
ij +

∑
i

∑
j T

2
ij︸ ︷︷ ︸

Squared differences if

the edge maps did not

overlap anywhere

.

Intuitively, if the generated map were to exactly match the true map, the numerator

would be 0, giving an accuracy of 1. If the generated map did not match up at all with

the true map, then the numerator would equal the denominator and the accuracy would

be 0.

The results of the segmentation evaluation are shown in Table 4.1. As expected, my

algorithm performed about half-way between K-Means and the state-of-the-art, gPb-

ucm-color [3]. This is consistent with my initial research, shown in Figure 2.1. A more

detailed analysis is given in Figure 4.3, which shows the distributions of accuracies of

images across the dataset for different algorithms.

My results can be trusted because the ordering is consistent with the results of Arbelaez

et al. [3], the creators of the BSDS.

4.3. HUMAN EVALUATION 65

Algorithm Mean Accuracy Standard Deviation

gPb-ucm-color 0.75 0.12

Brightness/Texture Gradients 0.59 0.12

My Saliency Segmentation 0.55 0.14

My Segmentation (no saliency) 0.44 0.14

Color Gradient 0.40 0.12

Otsu Binary Thresholding 0.24 0.14

K-Means (k = 2) 0.24 0.14

K-Means (k = 3) 0.18 0.11

K-Means (k = 4) 0.15 0.10

Random 0.12 0.04

Table 4.1: Average accuracies of different segmentation algorithms.

The results show an improvement in accuracy of 25% is achieved by using saliency infor-

mation in my implementation.

4.3 Human Evaluation

The human evaluation had two stages: first, I asked participants to manually sort a

set of 40 photographs and then, some time later, to use two separate interfaces to my

tool (Efficient and Intuitive, see Section 3.5) to sort the same images. The tool aimed

to assist sorting by using the extracted image features. If the tool successfully extracted

useful aesthetic information, the resulting data would be correlated with the user’s manual

ranking. Participants were divided into two groups: one with only low-level features

enabled, and one with both high- and low-level features enabled. There were 4 different

image datasets, each with different themes to evaluate the tool in a different setting.

4.3.1 Evaluation Structure

Several considerations needed to be made in planning the evaluation:

• Participant demographic. I aimed to recruit a representative number of people with

differing levels of photography experience (Table 4.2). Whilst most participants

were students, I made sure to include some from other age groups and backgrounds

where possible.

• To capture individuals’ subjective preferences, I asked people to sort the same set

of images in both stages. Comparing their tool sorting with another participant’s

manual sorting would not evaluate how well the program captures one person’s

unique preferences.

66 CHAPTER 4. EVALUATION

Figure 4.3: Normalised segmentation histograms. x-axis is the algorithm’s segmentation

accuracy against ground truth, as a percentage. y-axis is the count of images falling in

an accuracy bin.

4.3. HUMAN EVALUATION 67

Experience Count %

Almost never use a camera 4 17%

Occasionally take photographs 14 61%

Photography is a hobby 5 22%

Table 4.2: Participant Photography Experience

• To mitigate bias of the manual sorting on the subsequent tool sorting, a week’s gap

was left between the two stages. The assumption (discussed in the next section)

was that people agree with their own sorting at a later time.

• To eliminate any potential bias from the initial order of images, I randomised the

filenames for each user, so the images would appear in a random order on their

computer.

I constructed four 40-image datasets for the evaluation, with different themes:

Dataset 1: (to evaluate the application in the use-case of a professional photogra-

pher) Images containing well-defined subjects, from professional photographers.

Dataset 2: (to evaluate discrimination by subject matter) Also containing well-

defined subjects, but split into 4 groups of 10, each of which was from a single nature

shoot: Birds, Butterflies, Goats and Reindeer.

Dataset 3: Same theme as Dataset 1, but for amateur photographers.

Dataset 4: (to evaluate performance with less accurate segmentations) Images

where a subject is difficult to define, such as landscapes and textures.

4.3.2 Speed of Sorting

Figure 4.4 shows that both tools are faster than manually sorting, and that the Intuitive

interface is much faster to use than the slider-based one. This is partly because the

participants had no training time to get used to the slider-based approach. The Efficient

interface seems to take longer when high-level features are enabled, which makes sense

because there are twice as many sliders to worry about.

4.3.3 Hypothesis Testing

For evaluating the tool, only data from sets 1 and 3 are used. This is because the high-

level features are not designed for the other two sets, which do not contain well-defined

subjects. I compare the results between datasets in Section 4.5.3. Apart from hypothesis

test 3, I only use data from participants who had segmentation-derived features enabled.

This evaluates the full power of the tool.

68 CHAPTER 4. EVALUATION

Manual Intuitive Efficient
0

6

12

Low-level onlyLow-level only All featuresAll features

Sorting Type

M
ea

n
so

rt
in

g
ti

m
e

(m
in

ut
es

)

Figure 4.4: Speed of Sorting

For each of the following hypothesis tests, I summarise the results and give the effect

size (correlation difference). Cohen [5] suggests that, in the social sciences, a correlation

|r| = 0.10 is ‘small’, |r| = 0.30 is ‘medium’, and |r| = 0.50 is ‘large’. The full statistical

reasoning for each test can be found in Appendix B.

1. Does the Efficient tool extract some information that can discriminate

aesthetic image quality? Yes (with 99.96% significance)

Effect size for tool accuracy (average correlation between tool sorting and manual sorting):

r = 0.24.

The Efficient tool was accurate enough in my study to suggest that it successfully

extracts personal preference information. This means that its results are better than a

random guess.

2. Does the Intuitive tool extract some information that can discriminate

aesthetic image quality? Yes (with 99.999% significance)

Effect size for tool accuracy: r = 0.28.

The Intuitive interface also passes.

3. Do the segmentation-derived features help? Not enough data to conclude

4.4. INDIVIDUAL FEATURES EVALUATION 69

Effect size for accuracy gain when high-level features are enabled: r = 0.08.

There is not sufficient evidence to suggest that the segmentation derived features

help. The test would only pass with less than 82% significance. This is likely to be

due to insufficient data/participants, since user feedback suggested they did actually help.

4. Is aesthetic image quality subjective? Yes (with 99.9999% significance)

Effect size for difference between different participants’ manual sortings: r = 0.68.

People do not sort images in the same way. That is, they have their own individual image

preferences, rather than a collective view of a “good image”. This is perhaps obvious,

but is crucial for the motivation of my approach for the tool, which does not try to learn

an average of many humans’ image preferences (as a machine learning approach might).

Instead, individual subjectivity is left with each user.

5. Are people biased by the initial ordering of images? Not with 95% signifi-

cance

Effect size for average correlation between initial order and manual ranking: r = 0.04.

On average, people were not biased by the original image order, which means that it was

probably not necessary to randomise the filenames.

6. Do peoples’ image quality preferences change over time? Yes (with 99.99%

significance)

I asked some participants to perform a manual sorting of their images a second time after

doing the main study.

Effect size for change in manual sorting over time: r = 0.26.

Peoples’ image preferences do change over time. This further motives my approach,

but reduces the reliability of the study because I assumed peoples’ manual sortings to

be ground truth data. In fact, preferences may have changed by the time participants

re-sorted the image set using the tool.

7. Does using the tool bias peoples’ image quality preferences? Not at 95%

significance

Effect size for correlation change of manual sortings with the tool sorting: r = 0.01.

People were not biased by the tool, and so it is unlikely to be the cause of the change

found in test 6.

70 CHAPTER 4. EVALUATION

B
rightness

Intensity C
ontrast

Saturation

B
lurriness

Subject(s) Size

R
ule of Thirds

Shape C
onvexity

B
ackground D

istraction

Brightness -0.73 -0.42 -0.21 0.13 -0.07 -0.08 0.05

Intensity Contrast -0.73 0.36 0.18 -0.05 0.04 0.29 -0.06
 Low Level

Saturation -0.42 0.36 0.21 -0.16 0.17 0.22 0.06

Blurriness -0.21 0.18 0.21 -0.02 -0.10 0.05 0.17

Subject(s) Size 0.13 -0.05 -0.16 -0.02 0.04 -0.20 -0.40

Rule of Thirds -0.07 0.04 0.17 -0.10 0.04 -0.11 -0.10
 High Level

Shape Convexity -0.08 0.29 0.22 0.05 -0.20 -0.11 0.06

Background Distraction 0.05 -0.06 0.06 0.17 -0.40 -0.10 0.06

Low Level High Level

Table 4.3: There is not as much correlation between low- and high-level features as there

is within the two categories.

Feature Σ |Correlation|
Rule of Thirds 0.63 Most independent

Background Distraction 0.90

Blurriness 0.93

Subject(s) Size 1.00

Shape Convexity 1.01

Saturation 1.59

Brightness 1.69

Intensity Contrast 1.71 Most correlated

Table 4.4: The second column is the sums of rows in Table 4.3. Rule of Thirds correlates

the least with the other features, and Intensity Contrast and Brightness correlate the

most.

4.4. INDIVIDUAL FEATURES EVALUATION 71

4.4 Individual Features Evaluation

I sorted 80 images by the features separately and computed the correlations for each of

the 28 pairs of features, shown in Table 4.3. The most correlated feature pairs are:

• Brightness and Intensity Contrast (negatively correlated) – Night-time images have

high contrast. The average intensity is brought down by the darkness, but there is

a large variance in intensities (from black to normal-brightness subjects).

• Subject(s) Size and Background Distraction (negatively correlated) – Background

Distraction uses the Subject(s) Sizes information to decide what the background is.

If the “subject” is large, then the “background” is small, which limits the number

of possible colours inside it (and vice versa).

• Brightness and Saturation (positively correlated) – This could be due to the specific

Saturation implementation, which sees very dark colours as highly saturated.

Furthermore, there is not as much correlation between low- and high-level features as

there is within the two categories. This makes sense, because the saliency segmentation

process is long and non-linear, which is unlikely to bear any resemblance to the relatively

simple low-level feature extractors.

Table 4.4 summarises the data to show that Rule of Thirds captures the most unique

image information that the other features do not, so is most crucial for allowing different

image sortings. Intensity Contrast or Brightness would be “missed least” if they were

deleted from the feature set. However, it is important to note that this analysis does not

say anything about which features are best for discriminating image quality. For example,

it could be the case that all of the “unique” information that Rule of Thirds contains is

useless for the application.

Although it would be nice to have a minimal set of features which are like some form of

Principal Components of the input image set, a trade-off must be made for my approach

so that the features can be: (a) constant across different image sets, so that they do not

need to be redefined depending on the exact set of images; and (b) meaningful to a human,

so that useful insight may be gained about what high-level properties discriminate image

quality best, and so that slider-based sorting is possible.

4.5 Discussion

4.5.1 Which features are best?

To get an idea of which features are most useful for discriminating image quality, I exam-

ined the feature weights. The Intuitive interface infers weights, and the Efficient interface

lets users freely choose them. Table 4.5 shows “feature popularity” for the different in-

terfaces and participant groups.

72 CHAPTER 4. EVALUATION

Feature
Feature Popularity (Average absolute feature weight)

Intuitive

All Features

Efficient

All Features

Intuitive

Low-level-only

Efficient

Low-level-only

Brightness 0.42 0.36 0.38 0.23

Intensity Contrast 0.23 0.32 0.73 0.52

Saturation 0.77 0.53 0.68 0.40

Blurriness 0.41 0.40 0.52 0.42

Subject(s) Size 0.46 0.41 - -

Rule of Thirds 0.43 0.61 - -

Shape Convexity 0.51 0.48 - -

Background Distraction 0.49 0.58 - -

Table 4.5: A larger popularity means that people, on average, relied upon the feature

more to discriminate image quality.

Brightness seems to be the least used feature overall and, since it is one of the most

redundant features (see Section 4.4), it would probably be missed the least if deleted from

the feature set. Saturation, Background Distraction and Rule of Thirds appear to be the

highly-used features.

Comparing the two interfaces, Saturation was highly-used in the Intuitive interface. This

suggests that people truly use this feature the most (out of the 8). However, it was less

popular with the Efficient interface, where participants could decide for themselves how

important they thought it was.

Blurriness, Subject(s) Size and Shape Convexity are features whose popularity remains

roughly constant between the interfaces. This implies that participants were good at

deciding how useful these features actually were to them.

4.5.2 User Feedback

I asked participants to rate the correctness of the tool’s sortings on a Likert-style scale

between -3 and 3. Table 4.6 shows the results. These satisfaction scores are higher than

the Spearman’s correlation results from Section 4.3.3 (computing a weighted combination

of the all-features happiness1 gives 0.62). This could suggest that people evaluated the

rankings in a more lenient way than Spearman’s does.

Yeh et al. [22] evaluated their tool in a similar way, giving users the options “very good”,

“good”, “bad”, and “very bad”. Their results were (8.3%, 91.7%, 0%, 0%) respectively.

Computing a weighted combination of these2 gives 0.54. This suggests that my modified

approach may have been better than theirs, although this kind of human data is often

noisy.

11× 17% + 2
3 × 67% + 0× 17% = 0.616̇

21× 8.3% + 1
2 × 91.7% = 0.5415

4.5. DISCUSSION 73

Efficient Happiness All
Features

Low-level
only Average

(-3) - Nearly completely sorted the wrong way 0% 0% 0%
(-2) - Mostly sorted the wrong way 0% 0% 0%
(-1) - Slightly sorted the wrong way 0% 17% 8%
(0) - Apparently random 17% 0% 8%
(+1) - Slightly sorted correctly 0% 17% 8%
(+2) - Mostly sorted correctly 67% 67% 67%
(+3) - Nearly completely sorted correctly 17% 0% 8%

Table 4.6: Average participant satisfaction with the Efficient tool’s results

Preference All
Features

Low-
level only Average

Manual Sorting 16.7% 16.7% 16.7%
Intuitive Tool 16.7% 16.7% 16.7%
Efficient Tool 66.7% 66.7% 66.7%

Table 4.7: Average participant sorting method preference

Table 4.7 suggest that the Efficient tool was most popular. There were, however, still

some participants who preferred manual sorting.

Some participants gave written feedback after the study. One person wrote

“Once I had set the sliders I could easily see that some pictures that I may have

manually sorted lower were in fact potentially of higher standard than originally

thought ([the efficient tool] was kinda changing my mind as to what I originally

thought was a good or bad picture(in a good way))”,

which shows that preferences can change over time, and that happiness in the results is

relative.

One participant, who considered photography as a hobby and had high-level features

disabled, said that an important part of judging photo quality was

“the composition of the photo which is important but didn’t have a bearing on a

slider”.

This is exactly what the high-level features aim to capture.

Other feedback included the image thumbnails being too small in the tools, and 40 images

being too many to manually sort.

74 CHAPTER 4. EVALUATION

4.5.3 Subjects vs Landscapes

Since the high-level features are fundamentally defined in terms of the “subject(s)” of the

image, they do not make much sense on images that do not have well defined subjects,

such as the examples from Dataset 4 in Figure 4.5.

My tool also cannot discriminate by subject matter. This was particularly apparent in

Dataset 2, which contained birds, butterflies, goats and reindeer. This is the dataset that

the tool performed worse on, with an average correlation of 0.02 ± 0.16. One participant

commented that they ranked the reindeer images lower than others because of finding

reindeer ugly. Reindeer ugliness is not one of my features (nor should it be, since others

find reindeer cute). There is an underlying problem here that humans use past experiences

to judge images, which cannot be captured and assimilated by an automatic tool.

4.5.4 What’s missing?

Figure 4.6 shows that some images were consistently ranked incorrectly by the tool. The

majority of these outliers are caused by segmentation errors, some examples of which

are shown in Figure 4.7. However, the tool still consistently fails to correctly score some

other images despite a sound segmentation, as shown in Figure 4.8. This suggests there

is some information used by humans to discriminate image quality not captured by the

implemented features.

This could be due to not having the optimal set of features or it could be due to external

context that humans learn over the course of their lives. My high-level features make a

step towards reasoning about objects in the image, but they cannot solve the AI-complete

general object recognition task that would be necessary to rank a bird photograph higher

because a particular user likes birds more than they like butterflies.

4.5. DISCUSSION 75

Original Saliency Map Saliency Segmentation

Subject (tree) covers most of the image, so it cannot be salient relative to a background. It is

assumed to be the background, and bits of sky become salient

Subject (tree) covers whole image. No objects stand out in the image, so the assumed “subjects” are

small arbitrary regions of different colours

There is no clear subject. Even so, the region chosen to be the subject (most salient region) covers the

whole width, so features about its “position”, “shape” or “background” makes no sense.

Figure 4.5: Images with poorly defined subjects have less meaningful saliency segmenta-

tions.

76 CHAPTER 4. EVALUATION

(a) (b) (c)

Figure 4.6: Correlation of tool rank against manual rank. The colour of each point

indicates the image being ranked. (a) With all data points, correlation r = 0.24. (b)

The program assigned incorrect scores to some images. (c) With worst 8 images removed,

correlation r = 0.36

4.5. DISCUSSION 77

Original image Saliency Segmentation Error Type

High tool rank,

low human rank

Segmentation failed to identify squirrel, so high-level feature values are wrong

Low tool rank,

high human rank

Part of branch included in subject, which ruins the RoT and Subject Size feature values

Low tool rank,

high human rank

Intended subject not correctly inferred due to distracting object in top-right

Low tool rank,

medium human rank

Subject not correctly found. More than just colour difference needed for saliency for this image

Figure 4.7: Segmentation Error Outliers

78 CHAPTER 4. EVALUATION

Original image Saliency Segmentation

High tool rank, low human rank

Study participants found image boring and nonsensical

Low tool rank, high human rank

High tool rank, low human rank

Figure 4.8: Missing Information Outliers

Chapter 5

Conclusions

The project successfully met the core criteria established in the Proposal, as well as many

extra goals along the way. I created a feature-based tool for assisting people in the task

of preferentially sorting images, with the aim of leaving the inherent subjectivity with the

humans that create it.

The user trial showed that my tool successfully extracted useful aesthetic information,

and that it is faster and more popular than manual sorting. The results obtained were

similar to that of Yeh et al. [22], on which the project is based. Although my evaluation of

whether high-level, segmentation-derived features improve the accuracy was inconclusive,

the study produced many other interesting results about the problem and my approach

to tackling it. The quantitative results from the evaluation of the segmentation algorithm

were consistent with expectations, and showed that saliency information helped.

5.1 Reflections

The chosen programming language, C#.NET, made GUI creation easy and was easier to

learn than anticipated, in part due to the excellent code analysis tools available within the

IDE. The Agile software engineering strategy encouraged me to create testable, modular

work items that could fit into sprints in between supervisor meetings.

There are some things that I could have done differently, in hindsight:

• Data from only half of the participants was used for most of the tool’s evaluation

(datasets 1 and 3). I should have assigned more people to these sets than the other

two, which were less important in evaluating the general behaviour of the tool.

• Furthermore, the segmentation algorithm failed on some images in sets 1 and 3,

which gave an underrepresentation of the tool’s full power. I should have put more

thought into the construction of those datasets.

79

80 CHAPTER 5. CONCLUSIONS

5.2 Future Work

• The Blurriness feature could be applied to the subject only, changing it from a low-

to a high-level feature. This could be implemented using a Discrete Wavelet Trans-

form with a wavelet basis such as the Gabor Wavelets. It would then discriminate

between motion blur and depth-of-field.

• Investigate non-linear combinations of feature values, such as conditionals and

thresholds.

• Some features could include content detection classifiers based on deep convolutional

neural networks. For example, there could be a Reindeer slider with an associated

classifier for detecting reindeer. People who like reindeer would then be able to

assign this feature a high weight.

• State-of-the-art segmentation algorithms could be integrated with the same frame-

work; more accurate segmentation-derived features could give more accurate sort-

ings.

5.3 Final words

This project was a great opportunity to learn about computer vision, image processing

and how humans judge image quality. Although I have not been able to statistically

show that segmentation-derived features help with aesthetic image sorting, I justified

and evaluated the feature-based approach to the problem and have shown that my tool

successfully extracts user-specific information to produce “mostly correct” rankings. I

hope that my program would be found useful by real users, to speed up a task common

to professional, amateur and non-photographers alike.

Bibliography

[1] Radhakrishna Achanta et al. “Frequency-tuned salient region detection”. In: Com-

puter vision and pattern recognition, 2009. cvpr 2009. ieee conference on. IEEE.

2009, pp. 1597–1604.

[2] Pablo Arbelaez, Charless Fowlkes, and David Martin. “The berkeley segmentation

dataset and benchmark”. In:

see http://www. eecs. berkeley. edu/Research/Projects/CS/vision/bsds (2007).

[3] Pablo Arbelaez et al. “Contour detection and hierarchical image segmentation”.

In: IEEE transactions on pattern analysis and machine intelligence 33.5 (2011),

pp. 898–916.

[4] Tunç Ozan Aydın, Aljoscha Smolic, and Markus Gross. “Automated aesthetic anal-

ysis of photographic images”. In: IEEE transactions on visualization and computer

graphics 21.1 (2015), pp. 31–42.

[5] Jacob Cohen. “A power primer.” In: Psychological bulletin 112.1 (1992), p. 155.

[6] CIE Colorimetry. “CIE Publication”. In: CIE, Paris (1971), p. 15.

[7] Thomas H Cormen et al. Introduction to algorithms. MIT press Cambridge, 2009.

[8] Ritendra Datta et al. “Studying aesthetics in photographic images using a compu-

tational approach”. In: European Conference on Computer Vision. Springer. 2006,

pp. 288–301.

[9] Pedro F Felzenszwalb and Daniel P Huttenlocher. “Efficient graph-based image

segmentation”. In: International journal of computer vision 59.2 (2004), pp. 167–

181.

[10] Matthias Grundmann et al. “Efficient hierarchical graph-based video segmentation”.

In: Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on.

IEEE. 2010, pp. 2141–2148.

[11] George H Joblove and Donald Greenberg. “Color spaces for computer graphics”. In:

ACM siggraph computer graphics. Vol. 12. 3. ACM. 1978, pp. 20–25.

[12] Yan Ke, Xiaoou Tang, and Feng Jing. “The design of high-level features for photo

quality assessment”. In: Computer Vision and Pattern Recognition, 2006 IEEE

Computer Society Conference on. Vol. 1. IEEE. 2006, pp. 419–426.

81

82 BIBLIOGRAPHY

[13] Joseph B Kruskal. “On the shortest spanning subtree of a graph and the travel-

ing salesman problem”. In: Proceedings of the American Mathematical society 7.1

(1956), pp. 48–50.

[14] Xin Lu et al. “Rating image aesthetics using deep learning”. In: IEEE Transactions

on Multimedia 17.11 (2015), pp. 2021–2034.

[15] Yiwen Luo and Xiaoou Tang. “Photo and video quality evaluation: Focusing on the

subject”. In: European Conference on Computer Vision. Springer. 2008, pp. 386–

399.

[16] Ashutosh Saxena, Min Sun, and Andrew Y Ng. “Make3d: Learning 3d scene struc-

ture from a single still image”. In: IEEE transactions on pattern analysis and ma-

chine intelligence 31.5 (2009), pp. 824–840.

[17] Gaurav Sharma, Wencheng Wu, and Edul N Dalal. “The CIEDE2000 color-

difference formula: Implementation notes, supplementary test data, and mathemat-

ical observations”. In: Color Research & Application 30.1 (2005), pp. 21–30.

[18] Jianbo Shi and Jitendra Malik. “Normalized cuts and image segmentation”. In:

IEEE Transactions on pattern analysis and machine intelligence 22.8 (2000),

pp. 888–905.

[19] Oshin Vartanian et al. “Impact of contour on aesthetic judgments and approach-

avoidance decisions in architecture”. In: Proceedings of the National Academy of

Sciences 110.Supplement 2 (2013), pp. 10446–10453.

[20] Uro Vovk, Franjo Pernus, and Botjan Likar. “A review of methods for correction of

intensity inhomogeneity in MRI”. In: IEEE transactions on medical imaging 26.3

(2007), pp. 405–421.

[21] Zhou Wang et al. “Image quality assessment: from error visibility to structural

similarity”. In: IEEE transactions on image processing 13.4 (2004), pp. 600–612.

[22] Che-Hua Yeh et al. “Personalized photograph ranking and selection system”. In:

Proceedings of the 18th ACM international conference on Multimedia. ACM. 2010,

pp. 211–220.

Appendix A

Preparation Task List

As required by the Agile project strategy, I made a chronologically ordered list of imple-

mentation tasks to complete. It is organised in Table A.1 by risk and difficulty.

1. Segmentation algorithm

2. Saliency augmentation to the segmentation

3. Implementation of feature extractors

(a) Rule of Thirds

(b) Subject(s) Size

(c) Brightness

(d) Intensity Contrast

(e) Saturation

(f) Blurriness

(g) Shape Convexity

(h) Background Distraction

4. Multi-threaded framework for computing feature vector of all images in a folder

5. Saving feature values in JPEG Exif meta-data for re-use

6. Windows GUI, using MVVM pattern, before the human evaluation

(a) Efficient Interface, which allows users to manually select feature values using

slider

(b) Intuitive Interface, which should somehow predict user’s feature weights

83

84 APPENDIX A. PREPARATION TASK LIST

Low Risk Moderate Risk High Risk

Low Difficulty

– Saliency Augmentation

– Subject(s) Size

– Brightness

– Intensity Contrast

– Saturation

Moderate Difficulty – Background Distraction

– Rule of Thirds

– Blurriness

– Exif Metadata

High Difficulty
– Segmentation

– Efficient Interface

– Shape Convexity

– Intuitive Interface

Table A.1: Implementation tasks organised by difficulty and risk (core first, and exten-

sions later, time-permitting)

Appendix B

Hypothesis Testing

For evaluating the tool, I use images only from datasets 1 and 3, which contain well-

defined subjects. This is because the high-level features are defined based on subjects, so

are not designed for the other two sets. Apart from the comparison between segmentation

enabled and disabled, I use only data from participants who had segmentation-derived

features enabled. This tests the full power of the tool.

1. Does the Efficient tool extract some information that can discriminate

aesthetic image quality? Yes

If the tool extracted no preference information, then it would be no better than randomly

guessing the user’s preferential order.

Let X1 be the random variable for the Spearman’s Rank correlation of a person’s

Efficient tool sorting with their manual sorting, with population mean E(X1) = ρ1,

and µ1 is the expected correlation of a manual sorting with a random sorting (µ1 =

0).

The null hypothesis, that the tool is no better than random is

H0 : ρ1 = µ1.

The alternative hypothesis, that the tool is better than random is

H1 : ρ1 > µ1.

The sample mean correlation is X1 = 0.2358348968..., with sample standard devi-

ation s1 = 0.1725153108.... We can assume the correlations to be approximately

Normally distributed (X1 ∼ N(ρ1, σ1)). Therefore

Z ≈ X1 − ρ1
σ1

. (B.1)

Since we have a sample mean, X1 ∼ N(ρ1,
σ2
1

n
)

Z ≈ X1 − ρ1
σ1/
√
n

(B.2)

85

86 APPENDIX B. HYPOTHESIS TESTING

and we use s21 as an approximation for σ2
1. So

z1 ≈
X1 − µ1

s1/
√
n

= 3.3485443... (B.3)

is approximately from a standard Normal for H0.

For a 95% significance using a Standard Normal table, the z-value such that P(Z <

zα) = 0.95 is zα = 1.64. Since z1 > zα, the correlation is strong enough to reject H0.

For a 95% significance, the Efficient tool was accurate enough in my study to suggest

that it successfully extracts personal preference information. In fact, using the Normal

table, it would have passed with a 99.96% significance.

2. Does the Intuitive tool extract some information that can discriminate

aesthetic image quality? Yes

Using the same procedure as statistical test 1, but with the results for the Intuitive tool:

X2 = 0.2757348343...

s2 = 0.1414554353...

So z2 = 4.774716835.... Since z2 > zα, H0 can be rejected. This means that, if we

assume the null hypothesis to be true (ρ2 = 0), then the probability that the sample

mean is in this distribution is less than 0.05.

For the Intuitive tool (and a 95% significance), the average correlation is high enough

to suggest that its resulting sortings are better than random guesses. In fact, this test

would pass with 99.999% significance.

3. Do the segmentation-derived features help? Not enough data to conclude

In other words, is the tool more accurate with high-level features enabled?

In this unpaired mean-difference test, let X3S be the random variable for the Spear-

man’s Rank correlation of a person’s Intuitive tool sorting with their manual sorting,

given they had all features enabled, and let X3NS be the same for low-level-only par-

ticipants. If E(X3S) = ρ3S and E(X3NS) = ρ3NS, then:

The null hypothesis, that the high-level features do not increase tool accuracy is

H0 : ρ3S = ρ3NS or ρ3S − ρ3NS = 0.

The alternative hypothesis, that the segmentation-derived features help is

H1 : ρ3S > ρ3NS or ρ3S − ρ3NS > 0.

The test data is:

X3S = 0.2757348343, s3S = 0.1414554353

X3NS = 0.1975609756, s3NS = 0.143360754

87

We can approximate to the standard Normal for H0 using

Z ≈ X3S −X3NS√
Var(X3S) + Var(X3NS)

(B.4)

=
X3S −X3NS√
s23S/n+ s23NS/n

(B.5)

So, for this test, z3 = 0.9507750654....

Since z3 < zα, the difference is not large enough to reject H0.

There is not enough evidence to suggest that the segmentation derived features help.

The test would only pass with less than 82% significance. This is likely to be due to

insufficient data/participants, since there was actually a difference. With enough data,

the variance would have reduced, and any difference would be more significant.

4. Is aesthetic image quality subjective? Yes

Do people share a collective view of a ‘good’ or ‘bad’ image, or are there subjective

differences?

Let X4 be the random variable for the Spearman’s Rank correlation between the

manual sortings of two different people on the same set of images. If E(X4) = ρ4,

then:

The null hypothesis, that there is no subjectivity, is

H0 : ρ4 = 1 or 1− ρ4 = 0.

The alternative hypothesis, that people do not necessarily agree with each other, is

H1 : ρ4 < 1 or 1− ρ4 > 0.

The test data is:

X4 = 0.3242239468...

s4 = 0.2237562923...

We can approximate the standard Normal for H0 using

z4 ≈
1−X4

s4/
√
n

= 20.03336387... (B.6)

Since z4 > zα, the difference is far large enough to reject H0.

There is enough evidence to suggest that (with 95% significance) people do not sort

images in the same way. That is, they have their own subjective aesthetic image

preferences. In fact, this test would have passed with a 99.9999% significance level. This

is perhaps obvious, but is crucial for the motivation of my approach for the tool, which

does not try to learn an average of many humans’ image preferences.

88 APPENDIX B. HYPOTHESIS TESTING

5. Are people biased by the initial ordering of images? No

For the study I randomised the initial order of images for each participant, in the hope

that any bias would be eliminated through averaging. Here, I test whether this bias

existed in the first place.

Let X5 be the random variable for the Spearman’s Rank correlation of a person’s

manual sorting with their original, random ordering. If E(X5) = ρ5, then:

The null hypothesis, that there is no bias, is

H0 : ρ5 = 0.

The alternative hypothesis, that people are biased by the original order, is

H1 : ρ5 6= 0.

The test data is:

X5 = 0.0404221388...

s5 = 0.1897202127...

We can approximate the standard Normal for H0 using

z5 ≈
X5 − 0

s5/
√
n

= 0.9528415435... (B.7)

Since z5 < zα/2 (z5 < 1.96) for this two-tailed test, the sample bias is far too small

to be significant to reject H0.

These results suggest that people were not biased by the original image order, which

means that it was probably not necessary to randomise them. However, I did not know

this before the study was carried out.

6. Do peoples’ image quality preferences change over time? Yes

Perhaps not only do people disagree with each other over image quality, but with them-

selves. I asked some participants to perform a manual sorting of their images a second

time after doing the main study.

Let X6 be the random variable for the Spearmans’ Rank correlation of a person’s

manual sorting with their second manual sorting of the same images, at a later time.

If E(X6) = ρ6, then:

The null hypothesis, that there is no change, is

H0 : ρ6 = 1, or 1− ρ6 = 0.

The alternative hypothesis, that peoples’ preferences change, is

H1 : ρ6 < 1, or 1− ρ6 > 0.

89

The test data is:

X6 = 0.7434646654...

s6 = 0.1118344195...

We can approximate the standard Normal for H0 using

z6 ≈
1−X6 − 0

s6/
√
n

= 3.973125943... (B.8)

Since z6 > zα, the correlation is small enough to reject H0.

Even with 99.99% significance, there is sufficient evidence to suggest that peoples’ image

preferences do change over time. This further motives my approach, but reduces the

reliability of the study because I assumed peoples’ manual sortings to be ground truth

data. In fact, preferences may have changed by the time participants used the tool.

7. Does using the tool bias peoples’ image quality preferences? No

Following on from the previous test, I wanted to test whether it was perhaps the tool that

biased the change in preference.

For this paired difference test, let X7 = R7b − R7a be the random variable for the

difference between the Spearman’s Rank correlations of a person’s tool sorting and

their second manual sorting, and of the tool sorting and their first manual sorting.

If E(X7) = µ7, then:

The null hypothesis, that there is no bias, is

H0 : µ7 = 0.

The alternative hypothesis, that preferences change towards the tool sorting, is

H1 : µ7 6= 0.

The test data is:

X7 = 0.01475922452...

s7 = 0.09425509766...

We can approximate the standard Normal for H0 using

z7 ≈
X7 − 0

s7/
√
n

= 0.2712185058... (B.9)

Since z7 < zα/2, the difference is too small to reject H0.

The results suggest that (with 95% significance) the differences are too small to suggest

that the tool biased peoples’ preferences. The change shown in test 6 must have been

caused by something else.

90 APPENDIX B. HYPOTHESIS TESTING

Appendix C

Project Proposal

Computer Science Tripos – Part II – Project Proposal

An investigation into selected segmentation-derived

techniques for image quality assessment

Matthew Arnold (mpa29), Sidney Sussex College

Originator: Matthew Arnold

20 October 2016

Project Supervisor: Matthew Ireland (mti20)

Director of Studies: Dr John Fawcett (jkf21)

Project Overseers: Jean Bacon & Ross Anderson

C.1 Introduction

The aim of the project is to make a tool that allows humans to sort a set of images prefer-

entially, according to some precomputed features. The program will compute a number of

metrics related to general aesthetic image quality, which I categorise as either “high-level”

or “low-level”. The high-level features will be calculated using a segmentation-derived

feature-extraction approach based on the one taken by Yeh et al. [22]:

1. Identify the position and size of the most salient region, and

2. Relate these quantities to generally accepted aesthetic ‘rules’. Some examples are:

91

92 APPENDIX C. PROJECT PROPOSAL

• Rule of Thirds – A popular rule-of-thumb in photography. The subject of the

image should lie on one of the four intersections of lines breaking the image

into three in both axes, ‘power-points’.

• Region of Interest (ROI) size – How much of the image area is consumed by

the subject.

• Simplicity – How distracting the background is from the ROI.

• Shape Convexity – How much the subject segment fills its convex hull.

The low-level features do not use this image segmentation approach but include overall

brightness or intensity contrast. The tool will allow the user to adjust weightings for all

of the features, and the combination of features and weights will give a way to sort the

images.

This project has roots in the underlying field of aesthetic image quality analysis, which

is concerned with evaluating how beautiful images are to humans, by analysing the pixel

data. The task addressed by the project is a very specific one within this wider field,

with emphasis on leaving the subjectivity with the humans that create it. This project is

aimed at the application of trying to pick the best image(s) from a set taken of a particular

subject. Note that all of the photographs in the set would be of the same object or scene.

It will be useful in assisting a nature photographer, for example, who has taken many

photographs of birds, perhaps with different camera settings, lighting, and compositions.

He or she will want to sort through these, probably to pick the best few to look at in

more detail, for framing, sale on their website or submission to a competition. Manually

comparing all the photographs with each other would be time consuming, and inaccurate

with larger datasets.

Machine learning is not feasible for this application, because the photographer would

need a new set of training data each time he or she shoots a new subject or in a new

environment. The evaluation will attempt to determine which of the high-level, or low-

level features are more useful metrics for preferentially sorting the images, and whether

such a tool is more useful than the existing method of manual sorting.

When humans look at an image, they use past experiences to recognise different objects in

the image and use multiple contexts to form an aesthetic opinion. Since absolute general

object recognition is hypothesised to be AI-complete and it’s infeasible to assimilate all

of the context required, it is currently impossible to write a program that can exactly

determine whether or not someone will think a photo is good with 100% accuracy. Fur-

thermore, aesthetic preferences are inherently subjective, with image quality being no

exception, which makes the problem even harder to solve. We therefore aim to leave the

subjectivity with the user in this project, by allowing the user to set the feature weightings

rather than artificially inferring them.

Despite these limitations, a significant body of successful work has been done, and con-

tinues to be done, in the wider field. Early work tended to look at detecting types of

errors in images based on characteristics of the human visual system [21]. However, more

C.2. STARTING POINT 93

recently, there has been a lot of work on finding image features that follow general trends

of human aesthetic judgement [4].

The output of the project will be a tool to help humans sort a set of photographs using

metrics that are more meaningful than those that are conventionally available such as

file name, sequence number, or date captured, as well as an evaluation of the features

proposed. It will do this by sorting the images according to an overall ‘quality’ metric,

computed as a weighted sum of the extracted metrics, in such a way that the weightings

applied to each feature may be adjusted by the user. This will personalise the ranking

according to their own interpretation of what makes an aesthetically pleasing image. The

user will then be able to use this ranking as they wish, for example choosing the ‘best’

one or more, or discarding the ‘worst’. From my investigations, there doesn’t currently

appear to exist an accessible open source tool to do this.

C.2 Starting point

I have read some introductory material from the field of aesthetic image quality anal-

ysis, have limited experience of amateur photography, but have no experience of image

segmentation and processing algorithms/programming.

C.3 Substance and Structure of the Project

The project will look at different options for image segmentation algorithms, then use one

alongside a saliency map to extract some high-level features from images, then produce

a GUI to sort images using these features, and finally use the created GUI to evaluate

whether or not several specific high-level image features, contrasted against a selection of

simpler ones, are good discriminators of aesthetic image quality. The goal is to determine

whether such features could be used to aid humans in preferentially sorting their images.

Note that it is the usefulness of the features that’s being evaluated, not the GUI.

The main work units will be:

1. Research image segmentation algorithms, in order to decide which one to implement.

Write a document summarising my findings: which algorithm I chose, and why (and

why I rejected others).

2. Familiarisation with C#.NET and the Visual Studio IDE, especially the tools avail-

able for handling images, and creating GUIs.

3. Implementation of the chosen segmentation algorithm.

4. Write code to compute a saliency map [1] to assist in identifying the main segment

of the image.

94 APPENDIX C. PROJECT PROPOSAL

5. Implementation of functions that extract at least two high-level, segmentation-

derived features.

6. Implementation of functions that extract at least two low-level features: features

that don’t make use of the segmentation, including average brightness, contrast (for

intensity and colour), blurriness, and average saturation.

7. Design and creation of a GUI (as a Windows Forms Application) which allows the

input of a set of images, either calculates or loads previously computed metrics

based on the implemented features, and sorts the images by a weighted sum of

these values. The weightings for each feature should be able to be set and adjusted

by the user (perhaps using sliders).

8. Plan the human evaluation. I aim to investigate whether or not the tool is useful

for the application, and whether or not the segmentation-derived features help.

9. Carry out the human evaluation. From the human evaluation, I want to achieve

scientific results about the effectiveness of the feature-based approach for image

sorting. I will need to make sure that the participant sample size is large enough

to obtain meaningful results. Also, the number of images used, in total, and per

evaluation set, will need to be large enough in order to notice differences between

results for different types or qualities of image sets. The users should be given

instructions and the opportunity to practise using the GUI before evaluation proper,

so that the results aren’t perhaps skewed by the users learning to use a new tool.

10. Perform a numerical evaluation of my segmentation implementation. The numerical

evaluation will make use of the Berkeley Segmentation Dataset [2], which contains

human-annotated segmentations of images, such as below.

Figure C.1: An example from the Berkeley Segmentation Dataset. The original image is

on the left, and on the right is an average of five human-annotated segmentations of the

image.

11. Write the dissertation.

C.4. SUCCESS CITERIA 95

C.4 Success citeria

C.4.1 Core

The project will be considered a success if I:

• Implement an image segmentation algorithm. The actual algorithm to be imple-

mented will be chosen in the research phase. My implementation will be tested by

producing a visually similar result on five test images from the Berkeley Segmenta-

tion Dataset.

• Implement functions to extract values for two high-level features using the segmen-

tation: Rule of Thirds, and Region-Of-Interest size. [TBC in research phase]

• Implement functions to extract values for two low-level features not derived from

the segmentation: Intensity contrast, and Brightness. [TBC in research phase]

• Create a Windows GUI that can be used to sort an input set of images by a weighted

combination of the implemented features, with each feature weight chosen by the

user with some widget (such as a slider).

• Carry out a numerical evaluation of my image segmentation implementation.

• Carry out a human evaluation, comparing the usefulness of the segmentation-derived

features to the others for sorting images.

C.4.2 Extensions

• Implement more functions to extract different features, both those using and not

using the segmentation of the image. This includes Shape Convexity, Simplicity,

Colour contrast, blurriness and average saturation. [TBC in research phase]

• Make the GUI such that the set of metrics is relatively easy to extend.

• Add an option that crops/rotates images so that the ROI obeys the Rule of Thirds

better. This represents a major change in the scope of the project, so should only

be attempted if there is a lot of spare time.

C.5 Plan of Work (Timetable and Milestones)

Below is my plan of work, broken up into fortnight time chunks from now until the

dissertation hand-in deadline. I have put the most difficult implementation tasks first to

minimise risk (e.g. extracting high-level features before low-level ones), and added slack

blocks for the same reason.

96 APPENDIX C. PROJECT PROPOSAL

06/10/16 – 19/10/16 (Mich W1&2)

Submission of Phase 1 Report form. Discussion with project supervisor and overseers.

Arrange a schedule of regular meetings with my supervisor. Preliminary reading and

writing of project proposal. If/once informal approval from overseers is gained, begin

getting to grips with the C# language, and download an appropriate IDE.

Milestone: Send Phase 1 100-word report to overseers (Monday 10th Oct 3pm) [COM-

PLETED]

Milestone: Send Draft Project Proposal to overseers (Friday 14th Oct Noon).

Milestone: Hand in Final Project Proposal to Student Admin, signed by supervisor and

DoS (Friday 21st Oct Noon).

20/10/16 – 02/11/16 (Mich W3&4)

Research phase. Practising C#.NET, including its image manipulation tools. Also look at

editing and saving images (for making graphics for the dissertation). Read relevant papers

and other material describing and comparing different image segmentation algorithms.

Then decide which one to implement myself for the project.

Milestone: IDE installed and test program (e.g. sorting a list of numbers) compiling.

(26/10)

Milestone: Write a test program to show I can input an image, and extract pixel data

e.g. write a Gaussian blur program (02/11).

Milestone: Give a talk to fellow undergraduates about my image segmentation research.

Also discuss research document with supervisor. (02/11)

Milestone: Image segmentation algorithm chosen. (02/11)

03/11/16 – 16/11/16 (Mich W5&6)

Implement the chosen image segmentation algorithm.

Milestone: Show supervisor a working example of an image segmentation. Test by produc-

ing a visually similar result on five test images from the Berkeley Segmentation Dataset

(16/11)

17/11/16 – 30/11/16 (Mich W7&8)

Implement functions to extract the salient region of interest, and then the Rule of Thirds

feature. Test the saliency map by comparing my program’s results to those of Achanta

et al. [1] on images that they use.

Milestone: Produce a small number of graphics showing original images, their segmenta-

tions, and salient regions (30/11).

Milestone: Have human evaluation form completed and sent off with supervisor (30/11).

01/12/16 – 14/12/16 (XmasVac W1&2)

Implement functions to extract remaining segmentation-based and non-segmentation-

based features (at least two of each, defined in the Success Criteria). Test the low-level

features by comparing values produced by my program on the same image after the (e.g.

contrast or brightness) has been altered using an image editing application. Test the

high level features by taking photographs of the same subject, but moving the subject

C.5. PLAN OF WORK (TIMETABLE AND MILESTONES) 97

in the frame towards or away from a “power-point”. If I’m ahead at this point, consider

implementing more than two of each category of feature, as described in the Extensions

section. Apply feature extraction to chosen evaluation and testing images, and save the

results to persistent storage.

Milestone: Produce a small number of graphics showing original images, their segmen-

tations and salient regions, and values for extracted features. Compare similar images

(14/12).

15/12/16 – 04/01/17 (XmasVac W3,4&5)

SLACK or extensions.

05/01/16 – 18/01/17 (XmasVac W6&7)

Design and create the GUI as a Windows Forms Application. It should contain a list of

images to be sorted, as well as sliders for each of the features. Extension: Make the GUI

such that the set of extracted metrics is relatively easy to extend.

Milestone: Show supervisor the GUI working in the first project meeting after the holi-

days.

19/01/17 – 01/02/17 (Lent W1&2)

Plan the human evaluation, as well as writing the progress report.

Milestone: Hand in Progress Report (due Friday 3rd Feb at Noon).

02/02/17 – 15/02/17 (Lent W3&4)

Carry out the human and numerical segmentation evaluation. The exact structure of this

block will be dependent on how and when the human evaluation will be distributed or

carried out (which is to be decided in the previous block). Segmentation evaluation can

essentially be done in the gaps.

Milestone: Carry out numerical image segmentation evaluation using the Berkeley seg-

mentation dataset. (08/02)

Milestone: Carry out the human evaluation planned in the previous block. (15/02)

Milestone: End of all implementation and evaluation (i.e. all core implementation goals

achieved, and a sufficient amount of data gathered from the human evaluation. “Suffi-

cient” can be decided in the evaluation planning block) (15/02).

16/02/17 – 01/03/17 (Lent W5&6)

Start writing the dissertation. Draft the implementation section and send to supervisor.

Milestone: Hand in first draft of the Implementation section to supervisor for feedback.

(01/03)

02/03/17 – 15/03/17 (Lent W7&8)

Integrate supervisor’s feedback and draft the Introduction and Preparation sections of

the dissertation.

Milestone: Hand in first draft of the Introduction and Preparation sections to supervisor

for feedback. (15/03)

98 APPENDIX C. PROJECT PROPOSAL

16/03/17 – 29/03/17 (EasterVac W1&2)

Integrate supervisor’s feedback and draft the Evaluation and Conclusion sections of the

dissertation.

Milestone: Hand in first draft of the Evaluation and Conclusion sections to supervisor for

feedback. (29/03)

30/03/17 – 12/04/17 (EasterVac W3&4)

Integrate supervisor’s feedback and finish first draft of the dissertation.

Milestone: Hand in first draft of the dissertation to supervisor (12/04).

13/04/17 – 26/04/17 (EasterVac W5&6)

Wait for supervisor’s feedback and revise. Integrate final supervisor comments.

Milestone: Send dissertation to supervisor for final approval.

27/04/17 – 10/05/17 (Easter W1&2)

SLACK and revision for exams.

11/05/17 – 17/05/17 (Easter W3)

SLACK and revision for exams.

Milestone: Hand in dissertation (deadline noon on Friday 19th May at Noon).

Milestone: Make sure supervisor’s form is handed in by Wed 24th May (4pm).

C.6 Resource Declaration

In order to test my implementation, and to carry out the evaluation, I shall need a set

of images. These will be sourced from my project supervisor’s and my own personal

collections. No images containing peoples’ faces will be used, unless I gain consent from

those people.

I plan to use my personal laptop for writing code and storing images. A version control

system will be used and cloud storage will be used for backups, and regular backups will

be taken on an external hard drive. To ensure that the backups are working, I will do a

test-recovery after one of the earlier backups is taken. I accept full responsibility for my

machine and I have contingency plans to protect myself against hardware and/or software

failure. In the unlikely and unfortunate case of my laptop dying, I would switch to MCS,

using the backups, until I can buy a replacement computer.

	Introduction
	Motivation
	Background
	Related Work
	Context of the Work
	Overview of the Dissertation

	Preparation
	Starting Point
	Summary of the Research Phase
	Feature-based vs AI approach
	Segmentation Algorithm Choice
	Saliency
	Chosen Features

	Libraries and Tools
	Requirements Analysis
	Software Engineering Strategy
	Planned vs Actual Work Done

	Implementation
	Multi-threaded Feature Computer
	Segmentation and Saliency Segmentation
	Graph-based Image Segmentation
	Pixel Difference Metric
	Adding Saliency Information
	Choosing the Segmentation Parameters

	Computing High-level Image Features
	Rule of Thirds
	Subject(s) Size
	Background Distraction
	Shape Convexity

	Computing Low-level Features
	Blurriness
	Brightness
	Intensity Contrast
	Saturation

	User Interface
	Efficient Interface
	Intuitive Interface
	Model-View-ViewModel

	Optimisations
	Storing feature values for re-use
	Detecting slow code in the segmentation implementation

	Testing and Debugging

	Evaluation
	List of Objectives
	Segmentation Evaluation
	Human Evaluation
	Evaluation Structure
	Speed of Sorting
	Hypothesis Testing

	Individual Features Evaluation
	Discussion
	Which features are best?
	User Feedback
	Subjects vs Landscapes
	What's missing?

	Conclusions
	Reflections
	Future Work
	Final words

	Bibliography
	Preparation Task List
	Hypothesis Testing
	Project Proposal
	Introduction
	Starting point
	Substance and Structure of the Project
	Success citeria
	Core
	Extensions

	Plan of Work (Timetable and Milestones)
	Resource Declaration

